Mycosphere

Powdery mildew on *Salvia officinalis* in Corrientes, Argentina

Cabrera1*MG, Vobis G2 and Alvarez RE1

1Universidad Nacional del Nordeste (UNNE), (Department of Plant Protection) Facultad de Ciencias Agrarias. Sargento Cabral 2131. CP 3400, Corrientes, Argentina. cabrera@agr.unne.edu.ar

2Universidad Nacional del Comahue, Centro Regional Universitario Bariloche, Quintral 1250. CP 8400, San Carlos de Bariloche, Río Negro, Argentina. agavobis@bariloche.com.ar

We studied a powdery mildew species that affects *Salvia officinalis* plants in Corrientes, Argentina. Based on the features of the fungus we identified it within the genus *Oidium*, and its anamorph belongs to the species *Golovinomyces biocellatus*. The chasmothecia were not observed. A description and an illustration of the specimen are given.

Key words – *Erysiphales* – *Golovinomyces* – *Salvia officinalis*

Article Information

Received 29 August 2010
Accepted 8 September 2010
Published online 12 December 2010
*Corresponding author: Cabrera MG – e-mail – cabrera@agr.unne.edu.ar

Introduction

Salvia officinalis L. (*Lamiaceae*) popularly know as “salvia” or common sage, is a species that belong to a group of aromatic plants widely grown throughout the world. The common sage is an herbaceous and perennial plant used as a culinary herb, as a medicinal plant for its healing properties, and for its essential oil extracts in the perfume industry. This plant is cultivated in Argentina because it is commonly used in popular medicine.

During a survey of plant diseases in June 2008, powdery mildew symptoms were observed on *S. officinalis* plants growing in greenhouses of commercial plantations in the province of Corrientes (northeast region of Argentina). The white mycelia covered leaves and stems. As the disease progressed, the spots coalesced and the entire leaves turned necrotic. A microscopic observation of the samples revealed the existence of a fungus with an anamorph and chains of conidia characteristic of the genus *Oidium*. The genus *Oidium* belongs to the order *Erysiphales*.

Several reports demonstrate that fungal species in the order *Erysiphales* affect *Lamiaceae* plants (Amano 1986, Braun 1987, Liberato & Cunnington 2007, Marcum et al. 2010). In particular, *Erysiphe cichoracearum* DC was identified on *S. officinalis* in the province of Buenos Aires, Argentina (Madia & Gaetán, 2005).

The aim of this study was to describe the morphology and to study the pathogenicity of erysiphean fungi that affect *S. officinalis* in the province of Corrientes.

Methods

Examined material

Plants of *Salvia officinalis* were collected from greenhouses of commercial plantations in Corrientes, Argentina. The area where the specimens were collected belongs to the “Provincia Paranaense”, phytogeographical region of Argentina (Cabrera 1976).
Morphological study

Fresh hyphae, conidiophores and conidia were stripped off the leaf surface with clear adhesive tape, mounted on a microscope slide with water and examined using a light microscope.

Pathogenicity test

Pathogenicity was assessed by spraying spores from naturally infected leaves onto three healthy common sage plants: control plants were sprayed with distilled water only. The plants were maintained in a greenhouse at temperatures ranging from 20 to 26°C.

Voucher specimens were deposited in the herbarium of the National University of the Northeast, Argentina.

Results

We observed the presence of powdery mildew on *Salvia officinalis* during June 2008. We studied the morphological features of this erysiphacean fungus, the white superficial fungal growth covering leaves and stems (Fig. 1).

Fig. 1 – Symptoms of powdery mildew on *S. officinalis*.

The anamorphic stage of the fungus was founded on diseased leaves (Figs 2–5). The production of chasmothecia was not observed. The mycelium was superficial, hyaline, thin, amphigenous and scattered. The mycelial appressoria were papillate (nipple-shaped) to crenate. The conidiophores were cylindrical, average 66.5 × 11.25 µm. The foot cells were straight, with a constriction on the basal septum, and averaged 42.5 × 11.25 µm. The conidia were formed in chains, which were sinuate in outline. The conidia were hyaline, short, cylindrical or ovoid to doliform in shape; averaging 33.2 × 16.5 µm, lacking fibrosin bodies. The germination of the conidia was similar to the cichoracearum type. Pathogenicity was confirmed with initial symptoms of powdery mildew observed on the inoculated plants after 10 days; the control plants remained symptomless.

Discussion

Based on the anamorphic characters of catenate conidia, without distinct fibrosin bodies and nipple-shaped appressoria, we concluded that the *Oidium* fungus on *S. officinalis*
Mycosphere

is a mitosporic fungus that belongs to the subgenus *Reticuloidium*. The morphological features of the conidial stage were consistent with those of *Oidium hormini* Farnetti, the anamorph of *Golovinomyces biocellatus* (syn. *Erysiphe biocellata* (Ehrenb.) V.P. Gelyuta. Braun (1987).

Liberato & Cunnington (2007) reported that *G. biocellatus* causes powdery mildew on *Mentha* sp. in Australia and they founded indistinct appresoria in the specimens studied. Recently, Marcum et al. (2010) reported the presence of *G. biocellatus* on peppermint in California. They confirmed its identification by PCR (polymerase chain reaction).

Similarly stems of *Salvia verbenaca* L. were affected by an anamorph of *G. biocellatus* in Bahía Blanca, Argentina, (R. Delhey personal communication). In addition, *Erysiphe cichoracearum* DC was found on *S. officinalis* in Buenos Aires (Madia & Gaetán 2005). We hypothesize that these two fungi could be a single pathogenic species affecting *S. officinalis* in the province of Corrientes. However, the precise taxonomic position of the local fungus is uncertain due to lack of the perfect stage.

Acknowledgements

We acknowledge financial support from the Secretaria General de Ciencia y Técnica, UNNE, and to Dra. M. Rybak for critically reading the manuscript.

References

