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Abstract  

Mycelium of Armillaria species exhibit bioluminescence in nature and when cultivated on 

artificial nutrient media. However, fruiting bodies do not emit visible light. The present study 

investigates biochemical changes which cause this phenomenon. Light emission was studied in 

experiments with mixtures of cold and hot extracts of the luminous mycelium of Armillaria 

borealis IBSO 2328 and nonluminous fruiting bodies of this fungus and an unidentified species of 

the genus (Armillaria sp.). Hot extracts of fruiting bodies of the nonluminous Pholiota squarrosa 

were used as the substrate analog of the luminescent reaction, as previously this fungus had been 

found to contain a high amount of this substance. Control experiments showed that cold extracts of 

A. borealis IBSO 2328 mycelium contained enzymes for the luminescent reaction, which is 

initiated after addition hot extracts of P. squarrosa fruiting bodies. Parallel experiments with 

extracts of the fruiting bodies of Armillaria showed that: (i) – cold extracts did not contain enzymes 

of the luminescent reaction or contain very small amounts of these enzymes and (ii) – hot extracts 

did not contain substrate of the luminescent reaction. Thus, the reason why fruiting bodies of 

Armillaria do not emit light is that they do not contain components required for visible 

luminescence. The study discusses possible causes why the enzymes and substrate of the 

luminescent reaction are not synthesized in fruiting bodies of Armillaria.  
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Introduction 

Many higher fungi emit visible light, i.e. exhibit bioluminescence (Harvey 1952, 1957, 

Johnson & Haneda 1966, Shimomura 2006, Desjardin et al. 2008). Over 80 species of luminous 

basidiomycetes have been found in different regions of the world (Desjardin et al. 2008, 

Vydryakova et al. 2009, Chew et al. 2015, Mihail 2015). In some species, luminescence occurs in 

the whole fruiting body (Van 2009, Brandl 2011, Vydryakova et al. 2012, Oliveira et al. 2015). In 

other species, only caps or stems emit light (Desjardin et al. 2007, 2008, Teranishi 2016 a, b). It is 

well known that fruiting bodies of basidiomycetes of the genus Armillaria are not able to emit 

visible light (Harvey 1952, Wassink 1978, Desjardin et al. 2008, Mihail 2013, 2015). 

Luminescence occurs only in mycelium, growing on the natural substrate (wood) or artificial 

substrates (nutrient medium) (Shimomura 2006, Mihail & Bruhn 2007, Medvedeva et al. 2014). We 

have not found any published studies addressing biochemical causes of this phenomenon.  
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In the present paper, we report a study that explains and describes the reasons for the lack of 

luminescence in the fruiting bodies of basidiomycetes of the genus Armillaria. 

 

Materials & Methods 

In this study, we used fruiting bodies of Armillaria borealis and an Armillaria sp., collected 

around Krasnoyarsk (Russia) in September 2016. The biomass of fruiting bodies was used to 

prepare cold and hot extracts, which were analyzed for the presence of the enzymes and 

components the luminescent reaction. Cold extracts were also prepared from the biomass of 

luminous mycelium of Armillaria borealis strain IBSO 2328 from the Collection of the cultures of 

microorganisms CCIBSO 836 in the Institute of Biophysics SB RAS. As a substrate analog of the 

luminescence reaction, we used hot extract of the fruiting bodies of the nonluminous Pholiota 

squarrosa (Purtov et al. 2015, Puzyr et al. 2016). 

Biomass of the luminous mycelium of A. borealis was prepared by growing the fungus in 

submerged culture. Finely crushed mycelium of A. borealis strain IBSO 2328 which had been 

grown on solid medium in Petri-dishes was used as the inoculum. Mycelium pellets were grown in 

liquid PDB nutrient medium (potato extract - 200 g/L, dextrose - 20 g/L). The fungus was 

cultivated in 300-ml flasks containing 100 ml of nutrient medium. Cultivation was conducted for 

16-20 d at a temperature of 24°C under constant agitation at 160-180 rpm, using a Max Q 4000 

incubating shaker (Thermo Scientific, U.S.). PDB nutrient medium was purchased from HiMedia 

Laboratory (India). 

The biomass of A. borealis mycelium pellets was taken out of the nutrient medium and 

rinsed in deionized water to remove residual nutrient medium and metabolites. Deionized water 

was produced in a Milli-Q system (Millipore, U.S.). The rinsed pellets were transferred into a larger 

volume of deionized water and incubated for 24 h with the air constantly bubbling through the 

water. It is well known (Mori et al. 2011, Bondar et al. 2013, Mogilnaya et al. 2015, 2016) that 

incubation of the biomass of luminous fungi in water increases their luminescence level. Prior to 

using A. borealis, Armillaria sp., and P. squarrosa fruiting bodies to prepare cold and hot extracts, 

they were thoroughly rinsed in distilled water to remove contaminants. The procedure of preparing 

cold and hot extracts from the fungal biomass (mycelium and fruiting bodies) was described in 

detail elsewhere (Puzyr et al. 2016). All extracts were frozen at -30°C in a Sanyo Biomedical 

Freezer, model MDF – U333 (SANYO Electric Co., Ltd., Japan) and stored at this temperature 

until used. Before experiments, the extracts stored in MCT-200-C microtubes (Axygen Scientific, 

Inc., U.S.) were thawed at room temperature (23-25°С) and placed into a glass of ice where they 

were kept throughout the study.  

Samples of cold and hot extracts were mixed and the levels of light emission were measured 

to determine the presence of enzymes and substrates of the luminescent reaction in the extracts. The 

amplitude and dynamics of the light signal were measured using a Glomax® 20/20 luminometer 

(Promega BioSystems Sunnyvale, Inc., U.S.). The measurements were conducted as follows. A 

sample of cold extract (200 µl) was poured into MCT-200-C microtubes which were placed in a 

luminometer; then, it was supplemented with 5 µl 10 mM NADPH and 5 µl hot extract to trigger 

the luminescent reaction. Luminescence was monitored at a rate of one measurement per sec. Light 

emission intensity was expressed as relative light units (RLU) per sec.  

Images of the appearance and luminescence of mycelium samples of A. borealis growing 

under natural conditions and in submerged culture and the appearance of its fruiting bodies were 

prepared using a GelDoc XR Imaging System (Bio-Rad Laboratories, Inc., U.S.). The conditions 

for detecting the luminescent signal of mycelium samples were as follows (Puzyr et al. 2016): the 

diaphragm – open maximally, the time of signal accumulation – to 300 sec. At a low luminescence 

level, the image was enhanced by using the Transform function of the software: gamma 4.00, low 

60021. 
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Results 

 

 
 

Fig. 1 – The image of a wood sample with A. borealis fruiting bodies: a. visible light. b. 

luminescence of mycelium on the cross section of the wood sample. Images prepared using a 

GelDoc XR Imaging System. 

 

 
 

Fig. 2 – Luminescence of the sample at different time points after cleaving the wood: a. visible 

light. b. luminescence immediately after cleaving the wood. c. luminescence via 4 h after cleaving 

the wood. Images prepared using a GelDoc XR Imaging System. 

 

a b c 

a b 
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Fig. 3 – Appearance of A. borealis IBSO 2328 mycelium pellets: a. in visible light. b. 

luminescence of pellets. c. luminescence of individual pellets. Images prepared using a GelDoc XR 

Imaging System. 

 

Growth and luminescence of the fungus A. borealis in nature 

The appearance of nonluminous fruiting bodies of the fungus A. borealis growing in natural 

conditions on the natural substrate (wood) and the luminescence and changes in the mycelium 

luminescence intensity after cleaving the wood are shown in Fig. 1 and Fig. 2.  

 

A. borealis mycelium pellets – biomass for preparing cold extract 

Fig. 3 shows the appearance of A. borealis IBSO 2328 mycelium pellets after incubation in 

deionized water with the air constantly bubbled through the water. 

 

Luminescence of the cold extract from A. borealis mycelium  

Figures 4 and 5 show the intensity and dynamics of light emission by the cold extract from 

A. borealis IBSO 2328 mycelium with the sequentially supplemented of NADPH and the hot 

extract from P. squarrosa fruiting bodies (Fig. 4), and NADPH and the hot extract from A. borealis 

fruiting bodies (Fig. 5).  

 

Luminescence of the cold extract from A. borealis fruiting bodies 
Intensity and dynamics of light emission by the cold extract from A. borealis fruiting bodies 

sequentially supplemented with NADPH and the hot extract from P. squarrosa fruiting bodies are 

shown in Fig. 6. 

 

a b 

c 
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Fig. 4 – Luminescence: a. at the time when 200 µl of the cold extract was poured into the 

microtube. b. after addition of 5 µl of 10 mM NADPH. c. after addition of 5 µl of the hot extract 

from P. squarrosa fruiting bodies. Measurements were done by using Glomax® 20/20. 
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Fig. 5 – Luminescence: a. at the time when 200 µl of the cold extract was poured into the 

microtube. b. after addition of 5 µl of 10 mM NADPH. c. after addition of 5 µl of the hot extract 

from A. borealis fruiting bodies. Measurements were done by using Glomax® 20/20.  
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Fig. 6 – Luminescence: a. at the time when 200 µl of the cold extract was poured into the 

microtube. b. after addition of 5 µl of 10 mM NADPH. c. after addition of 5 µl of the hot extract 

from P. squarrosa fruiting bodies. Measurements were done by using Glomax® 20/20.  

 

Discussion 

 

Growth and luminescence of the fungus A. borealis in nature 

Results of detection of luminescent zones (Fig. 1, 2) show that the fruiting bodies A. 

borealis and the wood into which mycelium has grown normally do not emit light. The luminescent 

signal from the wood is generated after some time, reaching its maximum in 4 – 6 hours after 

external impact: mechanical injury to the mycelium, changes in the moisture content, and an 

increase in concentration of oxygen, which is necessary for the luminescent reaction to occur. The 

GelDoc XR Imaging System did not detect light emission by the fruiting bodies of any of the 

Armillaria strains used in our study, but the Glomax® 20/20 luminometer, which is more sensitive, 

can detect a weak level of chemiluminescence from the fruiting bodies. However, investigation of 

chemiluminescence which is typical to the fruiting bodies of nonluminous fungi (Gitelson et al. 

2012, Van et al. 2013 a, b) is outside the scope of the present study.  

 

A. borealis mycelium pellets – biomass for preparing cold extract 

The mycelium of A. borealis IBSO 2328 grown in laboratory on agar media (data not 

included) and in liquid culture (Fig. 3) exhibited strong luminescence. A. borealis cultivated in 

liquid nutrient medium produced large amounts of the biomass of mycelium pellets – starting 

material for preparing cold extracts, which contain enzymes of the luminescent system in the 

fungus. The pure culture IBSO 2328 was isolated from the nonluminous fruiting body of A. 

borealis. Thus, the genetic apparatus of the fruiting bodies of Armillaria must contain genes 

responsible for the synthesis of the enzymes and substrate of the luminescent reaction. Hence, we 

can propose three possible reasons why the fruiting bodies do not emit light. First, in the fruiting 

bodies these genes may be repressed and no components of the luminescent reaction (enzymes and 

substrate) can be synthesized. Second, one of the components of the luminescent reaction may not 

be synthesized. Third, the components of the luminescent reaction may be synthesized, but 

metabolites produced during growth of fruiting bodies may inhibit them.  
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Luminescence of the cold extract from A. borealis mycelium 

At the first step of experiments we examined luminescent properties of the cold extract from 

A. borealis IBSO 2328 mycelium pellets (Fig. 4). As a substrate analog we used the hot extract 

from P. squarrosa fruiting bodies, since it is known that it causes an increase the luminescent 

signal of cold extracts from some fungi (Purtov et al., 2015, Puzyr et al., 2016). The data shown in 

Fig. 4 suggest that the cold extract from IBSO 2328 mycelium pellets was nonluminous, and the 

addition of NADPH did not induce luminescence. The subsequent addition of the hot extract from 

P. squarrosa fruiting bodies induced a long-lasting luminescent signal with the light emission 

amplitude reaching 5 × 10
5
 RLU/sec. Hence, the cold extract from A. borealis IBSO 2328 

mycelium contained enzymes, but did not contain NADPH and active substrate of the luminescent 

reaction.  

As our experiment showed that addition of NADPH and the hot extract from the P. 

squarrosa fruiting bodies to the cold extract from A. borealis IBSO 2328 mycelium induced 

development of luminescence, we carried out an experiment with hot extracts from A. borealis 

fruiting bodies used as substrate. The experiment showed (Fig. 5) that after NADPH and the hot 

extract from A. borealis fruiting bodies were added to the cold extract from IBSO 2328 mycelium 

the luminescent signal remained unchanged and corresponded to the level of the background noise 

of the Glomax® 20/20 luminometer. Similar results were obtained in experiments with hot extracts 

from several Armillaria sp. fruiting bodies. Thus, hot extracts of the fruiting bodies of 

basidiomycetes of the genus Armillaria contained no substrate of the luminescent reaction.  

 

Luminescence of the cold extract from A. borealis fruiting bodies 
Our experiments showed (Fig. 6) that addition of NADPH and the hot extract from P. 

squarrosa fruiting bodies to the cold extracts from A. borealis fruiting bodies did not cause any 

significant changes in luminescence. The luminescent signal was insignificantly stronger than the 

background noise of the Glomax® 20/20 luminometer: the intensities of the light signals were 220 

– 240 RLU/sec and 130 – 150 RLU/sec, respectively. Similar data were obtained in experiments 

with cold extracts from Armillaria sp. fruiting bodies. 

This may suggest that cold extracts from the fruiting bodies of A. borealis and Armillaria 

sp. contained very low amounts of enzymes in the luminescent reaction. However, as the 

differences between the intensity of the luminescent signal and the level of the background noise of 

the measuring device were extremely small, we can not be completely sure that these differences 

were significant. Thus, the effect observed in our study cannot be considered as a sufficiently 

convincing proof that cold extracts from the fruiting bodies of the genus Armillaria contain the 

enzymes of luminescent reaction.  

Analysis of the data (Fig. 4 – 6) currently suggests the following biochemical causes of the 

absence of visible luminescence in fruiting bodies of basidiomycetes of the genus Armillaria: (i) – 

the absence of the substrate of the luminescent reaction and (ii) – the absence or very low amounts 

of the enzymes of luminescent reaction.  
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