Neosporidesmium subramanianii sp. nov. from Vietnam

Mel’nik VA¹, Popov ES¹,² and Braun U³

¹ Laboratory of the Systematics and Geography of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Street 2, St. Petersburg 197376, Russia
² Joint Vietnamese-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giau, Hanoi, Vietnam
³ Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany

Mel’nik VA, Popov ES, Braun U 2016 – Neosporidesmium subramanianii sp. nov. from Vietnam. Mycosphere 7(2), 148–153, Doi 10.5943/mycosphere/7/2/6

Abstract
The new species Neosporidesmium subramanianii, based on material collected in Vietnam on dead leaves of Saccharum spontaneum, is described, illustrated, compared with morphologically similar species, and an updated key to the species of Neosporidesmium is also provided.

Key words – ascomycetes – asexual morph – South East Asia – synnematous hyphomycetes – taxonomic novelty

Introduction
Vietnam is a tropical country with high but little explored fungal diversity. Within the scope of a research program of the Vietnamese-Russian Tropical Research and Technological Centre, in recent years numerous fungi of different taxonomic groups have been collected and published in a series of papers (Mel’nik 2011, 2012a, b, Mel’nik & Braun 2013, Mel’nik et al. 2012, 2013, 2014, 2015). Recently a synnematous hyphomycete was collected on dead leaves of Saccharum spontaneum, critical morphological examination revealed it to be an undescribed species of Neosporidesmium Mercado & J. Mena (Mercado & Mena 1988). Attempts to cultivate this fungus in vitro, in order to be able to carry out molecular analyses, failed, but due to striking morphological characters and clear differences to all similar and comparable species it is justified to introduce a new species of Neosporidesmium.

Materials & Methods
Fresh samples collected in the course of field trips in Vietnam were dried at room temperature. The collections were later examined in distilled water and photographed using a Zeiss microscope, Stemi 2000CS, and Axio Imager A1 equipped with Nomarski differential interference contrast optics. Measurements of 30 conidia and other structures have been made whenever possible at a magnification of ×1000, and the 95 % confidential intervals were determined and extreme values were given in parentheses. The identification of the new species was accomplished through comparison with descriptions of other species hitherto assigned to Neosporidesmium. Type material is deposited at LE.
Results

Neosporidesmium subramanianii Melnik, E.S. Popov & U. Braun, sp. nov. Fig. 1
S. subramanianii Melnik, E.S. Popov & U. Braun, sp. nov.

Diagnosis – Morphologically similar to N. macrosporum which, however, differs from N. subramanianii in having broader conidiophores, 4.5–8 μm wide, much larger conidiogenous cells, 23.5–34.5 × 7–9.5 (12.5) μm, and longer obclavate conidia, 108–250 μm, gradually attenuated towards the tip, with long attenuated terminal portion.

Typus – VIETNAM, Dong Nai Province, Tan Phu District, Cat Tien National Park (Nam Cat Tien Sector), right side of Dong Nai river close to the Park’s Headquarter, 11°25’31.9”N, 107°25’45.9”E, on dead leaves of Saccharum spontaneum, 17 Dec. 2014, E.S. Popov (LE 264614 holotype).

Colonies on natural substrate effuse, dark brown and hairy. Mycelium superficial and partly immersed in the substratum; hyphae septate, brown, thin-walled, smooth. Conidiomata synnematous, solitary, erect, dark brown to black, main portion more or less cylindrical to gradually attenuated towards the apex, 600–1200 μm long, 45–80 μm wide below, i.e. just above the basal part immersed in the substrate, which is discoid or even rhizoid, up to 120 μm diam, 24–30 μm wide near the apex. Conidiophores macronematous, unbranched, septate, wall ≤ 1 μm thick, smooth, brown to dark brown, 600–1200 μm long and 4–5 μm wide. Conidiogenous cells spread along the upper half to two-third of the synnema, sometimes up to 80 % of the upper part of the synnema with laterally splaying out conidiogenous cells, integrated, terminal, monoblastic, determinate, short subcylindrical-conical, doliform to lageniform 8–13 × 3–3.5 μm, brown to dark brown, thin-walled, smooth. Conidia holoblastic, solitary, dry, acrogenous, straight to somewhat curved, broadly obclavate, (80–90–112 (120) × 10–13 (14) μm, (8–)9–15-distoseptate, smooth, brown, with thin outer and thick inner wall layer giving rise to reduced cell lumina, apex obtuse, broadly rounded, with obconically truncate base, 3–3.5 μm wide, a trapezoidal portion of the base usually strongly pigmented, dark brown. Conidial secession schizolytic.

Known distribution – hitherto only known from the type locality.

Discussion

Fig. 1 – *Neosporidesmium subramanianii* (holotype). A Synnema. B, C, D conidiogenous cells. E – conidium. – Scale bars: A = 100 μm, B, C, D = 10 μm.
However, the most drastic emendation to the genus *Neosporidesmium* goes back to the description of *N. micheliae* Y.D. Zhang & X.G. Zhang (Zhang et al. 2011), a species characterized by having euseptate conidia. The two species of *Neosporidesmium* with euseptate conidia, *N. micheliae* and *N. vietnamense*, are possibly not congeneric with the type species of the genus. Besides euseptate conidia, the two species differ from distoseptate species in having uniformly pigmented conidia, i.e. without dark brown conidial base. Shenoy et al. (2006) published results of comprehensive DNA sequence analyses of a wide range of taxa of the *Sporidesmium* Link complex suggesting that *Sporidesmium*, *Ellisemia* Subram. and other segregated genera are not monophyletic. Particular species of these genera are phylogenetically placed in two major classes of ascomycetes, *i.e.* Dothideomycetes and Sordariomycetes. A single sequence referred to as *Neosporidesmium* sp. clustered in the Dothideomycetes adjacent to *Sporidesmium australiense* M.B. Ellis. However, as long as molecular data for *N. maestrense*, the type species, and the other species concerned are not available, we prefer to refrain from any taxonomic conclusions and changes on generic level. Applying the currently accepted morphological concept of *Neosporidesmium*, the new species from Vietnam can be readily assigned to the genus *Neosporidesmium*. Basic characters like conidiomata, conidiogenous cells, and septation of conidia agree well with the concept of this genus. It pertains to a group of species characterized by having monoblastic, determinate (non-proliferating) conidiogenous cells combined with distoseptate conidia. *Neosporidesmium macrosporum* is the only comparable species, which however differs in having much wider conidiophores, much larger conidiogenous cells, and significantly longer conidia, gradually attenuated towards the tip, with long attenuated terminal portion (see diagnosis). Species currently allocated to *Neosporidesmium* are keyed out in the following updated key based on an older version published by Mel’nik & Braun (2013).

Updated key to Neosporidesmium species

1. Conidia euseptate, conidial base more or less concolorous with body, not darker brown 2
 - Conidia distoseptate, base of the conidia around the hila strongly pigmented, darker brown . 3

2. Synnemata (380–)500–1430 µm long, 40–45 µm wide below; conidiophores 2–2.5 µm wide; conidia (75–)80–96–110 × 11–13.5 µm, wall smooth to somewhat rough, surface at least not quite even, rostrate apex subhyaline ... *N. vietnamense*
 - Synnemata up to 530 µm long, 20–30 µm wide below; conidiophores 4.5–6.5 µm; conidia 40–60 × 8.5–11 µm, wall smooth, apex not distinctly rostrate and pale brown *N. micheliae*

3. Conidiogenous cells percurrently proliferating, with distinct constriction (cells doliiform-lageniform) ... 4
 - Conidiogenous cells monoblastic, determinate, without any proliferations 6

4. Conidia distinctly rostrate, rostrum hyaline or sub-hyaline *N. antidesmatis*
 - Conidia non-rostrate .. 5

5. Conidia 45–67 × 6–7 µm, 6–7-distoseptate .. *N. microsporum*
 - Conidia 55–100 × 15–19 µm, 8–12-distoseptate ... *N. maestrense*

6. Conidia short, length < 55 µm .. 7
 - Conidia much longer, length > 50 µm (about 50–250 µm) .. 8

7. Conidia 22.5–33.5 × 7–9 µm, 6–7-distoseptate, apex pale brown and not distinctly rostrate .. *N. malloti*
 - Conidia 33.5–51.5 × 12–14 µm, 6–10-distoseptate, with distinct, hyaline or sub-hyaline rostrum, 11–19 µm long .. *N. xanthophylli*
8. Conidia distinctly rostrate, with long, filiform, hyaline to sub-hyaline beak 9
 - Beak lacking or conidia gradually attenuated towards the tip, but apex concolourous with the
 conidial body or somewhat paler, or apex of conidia distinctly swollen, with globose
 mucilaginous sheath or short branchlets ... 10

9. Synnemata 80–110 μm wide at the base; conidiogenous cells consistently monoblastic,
 determinate, without any proliferations; conidia 12–15 μm wide, 10–11-distoseptate
 ... N. sinense
 - Synnemata 30–50 μm wide at the base; conidiogenous cells without or with a single
 percurrent proliferation, but cells always lageniform-doliiform; conidia 7.5–9 μm wide, 11–
 15-distoseptate ... N. antidesmatis

10. Conidial apex with short branchlets (appendages) or with a globose mucilaginous sheath .. 11
 - Apex simple, obtuse, at most slightly swollen, but without any appendages or mucilaginous
 sheaths .. 12

11. Synnemata (615–)850–4700 μm long, and 35–145 μm wide, conidiogenous cells numerous,
 spread along almost the whole length of synnemata, from apex to base; conidial apex with
 short appendages, conidia 17–19 μm wide, 9–15-distoseptate N. appendiculatum
 - Synnemata up to 605 μm long, and 40–60 μm wide; conidiogenous cells not numerous,
 confined to the apical part of the synnemata; conidial apex with globose, mucilaginous
 sheath, 10.5–13.5 μm diam, conidia 10.5–13.5 μm wide, 8–11-distoseptate
 ... N. diaoluoshanense

12. Conidiophores 4.5–8 μm wide; conidiogenous cells doliiform, 23.5–34.5 × 7–9.5(–12.5) μm;
 conidia 108–250 μm long, obclavate, gradually attenuated towards the tip, attenuated
 terminal portion long .. N. macrosporum
 - Conidiophores 4–5 μm; conidiogenous cells subcylindrical-conical, doliiform to lageniform,
 8–13 × 3–3.5 μm; conidia (80–)90–112(–120) μm long, obclavate, but stout, attenuated
 terminal portion short ... N. subramanianii

Acknowledgements
The present study was carried out within the scope of the institutional research project (no.
01201255603) of the Komarov Botanical Institute of the Russian Academy of Sciences. We
gratefully acknowledge the technical support provided by The Core Facility Center “Cell and
Molecular Technologies in Plant Science” of the Komarov Botanical Institute, Russian Academy of
Sciences, St. Petersburg, Russia. The authors are much obliged to the administration of the Joint
Vietnamese-Russian Tropical Research and Technological Centre and to the Cat Tien National
Park for the assistance in the organization of field work. Expeditions and laboratory work were
supported by the Program Ecolan-1.2 of the Joint Vietnamese- Russian Tropical Scientific and
Technological Centre.

References
Li XY, Liu SY, Zhang XG. 2015 – A new species of Neosporidesmium from Hainan, China.
Mycotaxon 130, 307–310.
Ma J, Wang Y, Ma LG, Zhang YD, Castañeda-Ruíz RF, Zhang XG. 2011 – Three new species of
Neosporidesmium from Hainan. Mycological Progress 10, 157–162.
(In Russian)
Prasher IB, Verma RK. 2015b – Neosporidesmium appendiculatus sp. nov. from North-Western India. Mycological Progress 14, Article 87, 1–6.
Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD. 2006 – Ribosomal and RPB2 sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110, 916–929.