Taxonomic novelties of saprobic Pleosporales from selected dicotyledons and grasses

Brahmanage RS¹,²,³, Dayarathne MC⁶, Wanasinghe DN⁴,⁵, Thambugala KM⁷, Jeewon R⁸, Chethana KWT¹,³, Samarakoon MC¹, Tennakoon DS¹,⁴,⁵, De Silva NI¹,⁴,⁵, Camporesi E⁹,¹⁰,¹¹, Raza M¹³, Yan JY² and Hyde KD¹,³,⁵,¹²

¹Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
²Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China
³School of Science, Mae Fah Luang University, Chiang Rai, Chiang Rai, 57100, Thailand
⁴World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, People’s Republic of China
⁵CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China
⁶Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, People’s Republic of China
⁷Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayawardenepura, Gangodawila, Nuwegoda, Sri Lanka
⁸Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius.
⁹A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy
¹⁰A.M.B. Gruppo, Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forli, Italy
¹¹Società per gli Studi Naturalisti della Romagna, C.P. 143, Bagnacavallo, RA, Italy
¹²Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, People’s Republic of China
¹³State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China

Abstract

Pleosporales is the largest order in the class Dothideomycetes, comprising a quarter of all species of Dothideomycetes. This paper provides comprehensive illustrations and descriptions of newly collected saprobic pleosporalean taxa from dicotyledons and grasses in China, Italy, Russia and Thailand. These species are accommodated in 8 families in Pleosporales. The taxa described here include 14 new species, a new geographical record and three new host records of known species. New species are Alternaria rumicis, Bambusicola ficuum, Comoclathris flammulae, C. europaeae, C. lonicerae, Ophiobolus lathyri, Paraophiobolus torilicola, Parastagonospora dactylicola, P. hieracioidis, Pseudopaucispora hyalinospora, Stagonospora poaceicola, Stemphylium artemisiae and Subplenodomus meldolanus. All species descriptions presented herein are based on morphological comparisons coupled with multi-gene phylogenetic analyses.

Key words – 14 new species – Dothideomycetes – microfungi – phylogeny – taxonomy
Table of contents

The pleosporalean taxa are organized as in the “Outline of fungi and fungus-like taxa” (Wijayawardene et al. 2020).

Ascomycota R.H. Whittaker

Pleosporomycetidae C.L. Schoch, Spatafora, Crous & Shoemaker

Pleosporales Lutt. ex M.E. Barr

Bambusicolaceae D.Q. Dai & K.D. Hyde
1. *Bambusicola ficuum* N.I. de Silva & K.D. Hyde, sp. nov.

Lentitheciaceae
2. *Keissleriella italicata* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
3. *Pseudomurilentithecium clematidis* Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Leptosphaeriaceae
4. *Plenodomus biglobosus* (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley, new host record
5. *Plenodomus enteroleucus* (Sacc.) Gruyter, Aveskamp & Verkley, new host record

Lophiostomataceae
7. *Pseudopaucispora hyalinospora* Samarak. & K.D. Hyde, sp. nov.

Massarinaceae

Morosphaeriaceae

Phaeospheriaceae
10. *Ophiobolus lathyri* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
11. *Paraophiobolus torilicola* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
12. *Parastagonospora dactylidicola* Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Pleosporaceae
13. *Alternaria rumicis* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
14. *Comoclathris europaea* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
15. *Comoclathris flammulae* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
16. *Comoclathris lonicerae* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
17. *Stemphylium artemisiae* Brahmanage, Camporesi & K.D. Hyde, sp. nov.
18. *Stemphylium vesicarium* (Wallr.) E.G. Simmons, new host record

Introduction

Luttrell (1955) invalidly introduced Pleosporales, but it was subsequently validated by Barr (1987a) with Pleosporaceae as an important family and *Pleospora* Rabenh. ex Ces. & De Not., as the type genus (currently synonymized under *Stemphylium* Wallr.), (Wijayawardene et al 2017). The type species of *Pleospora* is *P. herbarum* (Barr 1987b). Previous studies indicated that the order comprises 20 families (Kodsueb et al. 2006, Boehm et al. 2009a, b, Mugambi & Huhndorf 2009, Schoch et al. 2009, Shearer et al. 2009, Suetrong et al. 2009, Tanaka et al. 2009, Zhang et al. 2009) and later, Zhang et al. (2012) accepted 25 families in Pleosporales. Subsequent studies by

Many new pleosporalean lineages from freshwater (Brahmanager et al. 2017, Luo et al. 2018), marine (Devadatha et al. 2018, Jones et al. 2019, Dayarathne et al. 2020) and terrestrial habitats (Tanaka et al. 2009, Wanasinghe et al. 2017a, 2018a, Zhang et al. 2019) have been recently documented. Phylogenetic analyses have shown that the placement of a large number of taxa is still unresolved, and there is a need to reconsider their classification (Wang et al. 2007, Pem et al. 2019). For example, Kruys et al. (2006) and Zhang et al. (2012) documented that Venturiaceae have a set of morphological and ecological characters, which are dissimilar to other Pleosporales members. Phylogenetic results of Schoch et al. (2009) indicated that members of Venturiaceae form a well-supported clade distant from the core members of Pleosporales, and excluded it from Pleosporormycetidae and Dothideomycetidae. Zhang et al. (2012) therefore introduced the new order, Venturiales. Other families, such as Zopfiaceae (as Testudinaceae) have also been shown to be unrelated to Pleosporales based on rDNA sequence data (Kodsueb et al. 2006). Tanaka et al. (2015) revised their taxonomy based on DNA sequence data from protein-coding regions for the suborder Massarineae. Given that the Pleosporales is highly diverse with many more new species awaiting to be discovered in the tropics (Hyde et al. 2018), there is a need to revise their taxonomy (especially with regards to the nomenclature of old species) with fresh collections (Dayarathne et al. 2016, Pem et al. 2019).

Economic significance of pleosporalean taxa

Phoma is an example of a coelomycetous genus, which are associated with a wide range of terrestrial plants, causing stem and leaf spots (Aveskamp et al. 2008, Zhang et al. 2009). At least 50% of the Phoma taxa re-described by Boerema et al. (2004) have been recognized as phytopathogenic species with plant quarantine issues (Boerema et al. 2004, Aveskamp et al. 2008, Chen et al. 2015). Although most of the taxa exist in the environment as saprobic soil organisms, many species can switch to a pathogenic lifestyle once the favourable conditions received (Aveskamp et al. 2008, Promputtha et al. 2007, Jayawardena et al. 2019b). Some Phoma species are pathogens of humans and other vertebrates, such as cattle (Costa et al. 1993, De Hoog et al. 2000) and fish (Voronin, 1989, Faisal et al. 2007). Furthermore, Phoma spp. can indirectly affect animal health by producing toxic secondary metabolites (Rabie et al. 1975, Bennett 1983, Pedras & Biesenthal 2000, Rai et al. 2009, Sørensen et al. 2011). One of the most unexplored habitats for Phoma species is the marine environment (Kohlmeier & Volkman-Kohlmeier 1991, Osterhage et al. 2000, Yarden et al. 2007) and several species have been listed from mangroves which need reexamining (Dayarathne et al. 2020).

Stemphylium species are saprobes (Han et al. 2019), but also occur on crops such as alfalfa (*Medicago sativa* L.), red clover (*Trifolium pratense* L.), potato (*Solanum tuberosum* L.), tomato (*Solanum lycopersicum* L.) (Ellis & Gibson 1975, Irwin 1984, Johnson & Lunden 1986, Simmons

Species of Alternaria are serious plant pathogens that trigger diseases on an extensive variety of crops, and some are important as postharvest pathogens, human pathogens which causes phaeohyphomycosis in immuno-compromised patients or act as airborne allergens (Woudenberg et al. 2013, 2015). Pleosporales also comprises species and varieties that are recognized as fungicolous, lichenicolous and endophytes (Xianshu et al. 1994, Hawksworth 2004, Schoch et al. 2009, Sun et al. 2019).

Recognition of plant-associated fungi is often hindered by the lack of morphological characters described or illustrated in the original publications and the endophytic or inconspicuous nature of pleosporalean taxa. DNA sequence data provide reliable information for diagnostic purposes of pathogens (Hyde et al. 2013, Jayawardena et al. 2019a, b).

Aim of the paper

This paper reports on the taxonomy of saprobic pleosporalean taxa on dicotyledons and identifies the species using morphology and multi-locus phylogenies. We also establish possible links between the asexual and sexual morphs. This study is a continuity of our studies on bitunicate fungi (Wanasinghe et al. 2017, Jayasiri et al. 2019, Pem et al. 2019, Hyde et al. 2020) and is an additional taxonomic contribution, where we recover novel saprobic pleosporalean taxa associated with dicotyledons.

Materials and Methods

Sample collections

Plant samples with pleosporalean taxa were collected from selected dicotyledons and grasses in China, Italy, Russia and Thailand from 2017 to 2019. Materials were labeled and brought to the laboratory in plastic Ziplock bags. These substrata were branches, fruits, roots, twigs and small parts cut from tree stems that are variable in size, length, color, texture and at different stages of decomposition.

Incubation and specimen examination

Samples were incubated in plastic containers with moistened sterilized tissue at 16–25°C for one week and then the fruiting bodies were examined using a dissecting microscope. Squash mounts and sections of the fruiting structures were mounted in water and stained with Melzer’s reagent, Indian ink or Congo red, when necessary for microscopic studies and photomicrography. Morphological characteristics of fungi were examined using a Nikon ECLIPSE 80i compound microscope and photographed by a Canon EOS 550D digital camera fitted to the microscope or Nikon, NIS-Elements F3.0. Measurements such as the diameter of ascomata, length and width of asci and ascospores and width of pseudoparaphyses were made with the Tarosoft Image Frame Work program and images use for figures were processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems Inc., US).

Isolation of pleosporalean fungi
For single spore isolation, a modified method of Chomnunti et al. (2014) was followed. Contents of the sectioned fruiting body were transferred to a drop of sterile water on a flame-sterilized slide. Drops of the spore suspension were pipetted and spread on a Petri-dish containing 2% water agar (WA). Then the plates were incubated at 10–30°C overnight. Germinated ascospores or conidia were transferred to potato dextrose agar (PDA) or malt extract agar (MEA).

Cultures and herbarium specimens
Cultures and herbarium specimens of isolated fungi were deposited in the Mae Fah Luang University culture collection (MFLUCC) and Mae Fah Luang University Herbarium (Herb. MFLU), Thailand respectively. Their duplicates were deposited at the Beijing Academy of Agricultural and Forestry Sciences (JZB), China and the Herbarium of Cryptogams Kunming Institute of Botany Academia Sinica (KUNHKAS), China. Facesoffungi numbers (FoF) and Index Fungorum (IF) numbers were obtained as explained by Jayasiri et al. (2015) and Index Fungorum (2020). New species are established based on the recommendations by Jeewon & Hyde (2016).

DNA extraction, Polymerase chain reactions (PCR) and sequencing
Mycelia (approximately 50 mg) were harvested from the fungal cultures grown on PDA, MEA or seawater PDA and extracted genomic DNA using EZ gene TM fungal gDNA kit (GD2416). When fungi failed to grow in culture, DNA was extracted directly from fruiting bodies following the method described by Zeng et al. (2018) and Wanasinghe et al. (2018b) using E.Z.N.A. ® Forensic DNA kit (D3591- 01, Omega Bio-Tek) according to manufacturer instructions. DNA amplifications were performed by polymerase chain reaction (PCR). Six loci were amplified including rDNA ITS (White et al. 1990), LSU, SSU (Vilgalys & Hester 1990), RPB2 (Liu et al. 1999), TEF1 (Carbone & Kohn 1999), GAPDH (White et al. 1990) and TUB2 (O’Donnell & Cigelnik 1997). The primers and PCR protocols are listed in Table 1. Amplifications were performed in 25 μl of PCR mixtures, containing 9.5 μl of ddH2O, 12.5 μl of PCR Master Mix, 1 μl of DNA template, and 1 μl of each primer (10 pM). The PCR products were visualized under UV light on 1% agarose electrophoresis gels stained with 4S green stain or ethidium bromide using the Gel Doc XR+Molecular Imager (BIO-RAD, USA). Purification and sequencing of PCR products were carried out at Sun biotech Company, Beijing, China. DNA sequences generated in this study were deposited in the GenBank for further studies.

Phylogenetic analysis
New sequence data and the related sequences obtained from Genbank were aligned in MAFFT v. 6.864b (http://mafft.cbrc.jp/alignment/server/index.html; Katoh et al. 2019) edited and improved using Bioedit v.7 (Hall 1999) and MEGA 5.0 (Tamura et al. 2013). Maximum likelihood (ML) and Bayesian inference analysis (BI) analyses were performed. ML analyses were performed using raxmlGUI version 1.3 (Silvestro & Michalak 2012). The optimal ML tree search was searched with 1000 separate runs, using the default algorithm of the program from a random starting tree for each run. The final tree was selected among suboptimal trees from each run by comparing the likelihood scores under the GTRGAMMA substitution model. The best scoring tree was selected. BI analyses were performed using MrBayes v. 3.0b4 (Ronquist & Huelsenbeck 2003), and nucleotide substitution model were determined with MrModeltest v. 2.2 (Nylander 2004). Posterior probabilities (PP) (Rannala & Yang 1996, Zhaxybayeva & Gogarten 2002) were defined by Bayesian Markov Chain Monte Carlo (BMCMC) sampling method in MrBayes v. 3.0b4 (Huelsenbeck & Ronquist 2001). Resulting trees were visualized with TreeView v. 1.6.6 (Rambaut 2012).

taxonomy
Ascomycota R.H. Whittaker
We follow the latest treatments and updated accounts of Ascomycota in Wijayawardene et al. (2020).

Class Dothideomycetes sensu O.E. Erikss & Winka

Dothideomycetes is considered to be the largest and most phylogenetically diverse class in the phylum Ascomycota (Schoch et al. 2009, Hyde et al. 2013). Liu et al. (2017) provided the divergence time estimations at different levels for the class Dothideomycetes and reported that divergence times can provide additional evidence to support the establishment of higher-level taxa, such as families, orders and classes. The subclasses of Dothideomycetes and their families reported in this study are listed in alphabetical order.

Table 1 Genes/loci used in the study with respective PCR primers and protocols

<table>
<thead>
<tr>
<th>Gene/loci</th>
<th>Primer</th>
<th>PCR protocol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal transcribed spacer</td>
<td>ITS5</td>
<td>Forward 94°C, 4 min</td>
<td>White et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>ITS4</td>
<td>Reverse 94°C, 45 sec</td>
<td></td>
</tr>
<tr>
<td>Large subunit (LSU)</td>
<td>LROR</td>
<td>Initial 94°C, 4 min</td>
<td>Rehner & Samuels (1994)</td>
</tr>
<tr>
<td></td>
<td>LR5</td>
<td>Denaturation 35 cycles</td>
<td></td>
</tr>
<tr>
<td>Small subunit (SSU)</td>
<td>NS1</td>
<td>56°C, 45 sec</td>
<td>Vilgalys & Hester (1990)</td>
</tr>
<tr>
<td></td>
<td>NS4</td>
<td>72°C, 1 min</td>
<td>White et al. (1990)</td>
</tr>
<tr>
<td>Elongation factor-1 alpha</td>
<td>EF1-728F</td>
<td>94°C, 3 min</td>
<td>Carbone & Kohn (1999)</td>
</tr>
<tr>
<td>(TEF1)</td>
<td>EF1-986R</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>RNA polymerase II second</td>
<td>fRPB2-5F</td>
<td>Initial 95°C, 5 min</td>
<td>Liu et al. (1999)</td>
</tr>
<tr>
<td>largest subunit (RBP2)</td>
<td>fRPB2-7cr</td>
<td>Denaturation 95°C, 45 sec</td>
<td></td>
</tr>
<tr>
<td>Beta tubulin (β–tubulin)</td>
<td>Bt2a</td>
<td>55°C, 2 min</td>
<td>Glass & Donaldson (1995)</td>
</tr>
<tr>
<td></td>
<td>Bt2b</td>
<td>72°C, 1.5 min</td>
<td></td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate</td>
<td>gpd1</td>
<td>94°C, 3 min</td>
<td></td>
</tr>
<tr>
<td>dehydrogenase (GADPH)</td>
<td>gpd2</td>
<td>94°C, 30 sec</td>
<td></td>
</tr>
</tbody>
</table>

Subclass Pleosporomycetidae C.L. Schoch et al.

Bambusicolaceae D.Q. Dai & K.D. Hyde

ellipsoidal, hyaline to brown, 1-septate ascospores (Dai et al. 2015). Bambusicolaceae differs from related families with asexual morph having holoblastic, annelidic or phialidic conidiogenous cells (Dai et al. 2015).

Bambusicola D.Q. Dai & K.D. Hyde

Bambusicola D.Q. Dai & K.D. Hyde was introduced and typified with *B. massarinia* D.Q. Dai & K.D. Hyde (Dai et al. 2012), and was previously placed in Trematosphaeriaceae based on ribosomal LSU gene sequence analysis. The genus is known for its asexual and sexual morphs. Hyde et al. (2013) provided a combined phylogenetic analysis of LSU, SSU, RPB2 and TEF1 data for the families in Dothideomycetes. Species of *Bambusicola* aggregated into a separate clade from other families in Massarineae, for which Hyde et al. (2013) introduced the new family Bambusicolaceae. We herein introduce a novel *Bambusicola* species from Thailand.

Bambusicola ficuum N.I. de Silva & K.D. Hyde, sp. nov.

 Index Fungorum number: IF 557332; Facesoffungi number: FoF 07740
 Etymology – The specific epithet reflects the host *Ficus* sp.
 Holotype – MFLU 17-0677
 Saprobitc on dead twigs of *Ficus* sp. Sexual morph: Ascomata 140–200 µm high, 165–210 µm diam. (\(\bar{x} = 155 \times 180 \mu m\), \(n = 10\)), immersed to semi-immersed on host surface, solitary, globose to sub-globose, dark brown. Neck small, short, elongate, and central with minute papilla. Peridium 20–30 µm wide, unequally thick, comprises two layers, outer 1–3 cell layers of hyaline to brown textura angularis cells and inner 1–4 cell layers of hyaline textura prismatica cells. Hamathecium comprising 1–2 µm wide, cylindrical to filiform, septate, pseudoparaphyses. Ascii 90–140 × 17–24 µm (\(\bar{x} = 120 \times 20 \mu m\), \(n = 20\)), 8-spored, bitunicate, fissistunicate, cylindric-clavate to clavate, short pedicellate, apically rounded, with an ocular chamber. Ascospores 42–50 × 6–9 µm (\(\bar{x} = 47 \times 7 \mu m\), \(n = 30\)), overlapping bi-seriate or multi-seriate, hyaline, fusiform, with rounded to acute ends, 1-septate, constricted at the septum, upper cell larger than lower cell, smooth-walled, hyaline, guttulate, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics – Colonies on PDA reaching 25 mm diameter after 1 week at 20–25°C, colonies medium sparse, circular, surface slightly rough with edge entire, cottony to fairly fluffy with sparse aspects, colony from above: yellowish white; reverse: brown at the center and yellow at the margin.

Material examined – THAILAND, Chiang Mai Province, Mae Tang district, Ban Pa Deng, Mushroom Research Center, dead twigs (attached to the tree) of *Ficus* sp. (Moraceae), 25 January 2017, N. I. de Silva, NI108 (MFLU 17-0677, holotype), ex-type living culture, MFLUCC 17-0872.
 GenBank Numbers – LSU: MT215580; SSU: MT215581; TEF1: MT199326

Notes – *Bambusicola ficuum* shows a close phylogenetic affinity to *B. dimorpha* and *B. pustulata* (Fig. 1). There are six base pair differences in TEF nucleotide sequences between *Bambusicola ficuum* and *B. pustulata* (0.87%). The TEF sequence data for *Bambusicola dimorpha* is not available for the current phylogenetic analyses. Morphologically, *Bambusicola ficuum* differs from *B. dimorpha* and *B. pustulata* in having longer ascospores (42–50 µm) with sheath, in contrast to the longer ascospores without sheath in *Bambusicola dimorpha* (17–25 µm) and *B. pustulata* (11–17 µm). *Bambusicola dimorpha* was collected in Chiang Mai Province, Thailand on dead bamboo culms (Thambugala et al 2017), while *B. pustulata* was reported in Phang-Nga Province, Thailand on dead bamboo culms (Dai et al. 2015). The new strain, *Bambusicola ficuum* was collected in Chiang Mai Province, Thailand on dead twigs of *Ficus* sp.

Lentitheciaceae Y. Zhang ter et al.

Lentitheciaceae was introduced by Zhang et al. (2009) with *Lentithecium fluviatile* (Aptroot & Van Ryck.) K.D. Hyde, J. Fourn. & Ying Zhang as the type species. Wanasinghe et al. (2014) listed six genera under this family and 14 genera are accepted in Wijayawardene et al. (2020).
Figure 1 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -6126.199615. The combined LSU, SSU and TEF sequence datasets comprised 19 strains of *Bambusicola* with *Camarosporium aborescentis* (MFLUCC 14-0604) and *Camarosporium caragamicola* (MFLUCC 14-0605) as the outgroup taxa. Tree topology of the ML analysis was similar to the BI. The matrix had 310 distinct alignment patterns, with 21.56% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.239116, C = 0.247058, G = 0.277564, T = 0.236262; substitution rates AC = 0.583379, AG = 2.265165, AT = 0.909124, CG = 0.754568, CT = 11.365613, GT = 1.000000; gamma distribution shape parameter α = 0.020000. Maximum likelihood bootstrap (ML, black) values equal to or greater than 65% and Bayesian posterior probabilities (PP, blue) equal to or greater than 0.90% are given above the nodes. The scale bar indicates 0.01 changes. The ex-type strains are in black bold and new isolates in red bold.
Figure 2 – *Bambusicola ficuum* (MFLU 17–0677, holotype). a Apices of ascomata. b, c Appearance of ascomata on the host material. d, e, f Section through an ascoma. g Pseudoparaphyses. h Peridium. i–k. Asci l–o Ascospores. p Germinating ascospore. q Culture on PDA upper view. r Culture on PDA lower view. Scale bars: b, c = 100 μm, d–f = 50 μm, g, h = 20 μm, i–k = 30 μm, l–p = 20 μm.
Keissleriella Höhn.

Höhnel (1919) introduced *Keissleriella* to accommodate *K. aesculi* (Höhn.) Höhn. (≡ *Pyrenochaeta aesculi* Höhn.). This genus is characterized by ascomata with ostiolar necks filled with black setae, and one to multi-septate, hyaline to pale brown ascospores (Barr 1990, Liu et al. 2015, Wanasinghe et al. 2018b, Phookamsak et al. 2019). The asexual morph comprises unbranched or branched, smooth, flexuous, hyaline conidiophores, phialidic conidiogenous cells and hyaline to brown, aseptate or septate conidia (Hyde et al. 2020). Munk (1957) placed *Keissleriella* in Lophiostomataceae, and this is followed by many subsequent authors (Zhang et al. 2012, Zhang et al. 2009) included the genus in Lentitheciaceae, and this is followed by many subsequent authors (Zhang et al. 2012, Hyde et al. 2013, Wijayawardene et al. 2014, Tanaka et al. 2015, Wanasinghe et al. 2017b, 2018b, Phookamsak et al. 2019, Hyde et al. 2020).

Keissleriella italica Brahanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557623; Facesoffungi number: FoF 08006

Etyymology – Epithet refers to the country, Italy where the specimen was collected.

Holotype – MFLU 20-0394

Saprobic on dead aerial stems of *Brassica* sp. (Brassicaceae). Sexual morph: *Ascomata* 120–240 × 110–120 µm (\(\bar{x} = 210 \times 105 \mu m\)), immersed to semi-immersed, appearing as black raised spots on the host, solitary, globose to subglobose, uniloculate, black, ostiolate with papilla filled with black setae. *Peridium* 18–25 µm wide, composed of 4–6 layers of pale brown to brown cells of *textura angularis*. *Hamathecium* comprising numerous, 0.8–1.3 µm wide, cellular, branched, septate, anastomosed pseudoparaphyses. *Asci* 50–70 × 12–18 µm (\(\bar{x} = 60 \times 16 \mu m, n = 20\)), bitunicate, 8-spored, clavate, rounded at the apex with a short furcate pedicel. *Ascospores* 8–10 × 2–3 µm (\(\bar{x} = 8.5 \times 2.5 \mu m, n = 20\)), overlapping uniseriate to biseriate, fusiform, hyaline, 1-septate, constricted at the septum, smooth-walled, guttulate and lacks a sheath. Asexual morph: Undetermined.

Material examined – ITALY, Province of Forlì-Cesena [FC], Forlì, via Correccchio, on dead aerial stems of *Brassica* sp. (Brassicaceae), 24 February 2018, E. Camporesi, IT 3746 (MFLU 20-0394, holotype; JZBH3490001, isotype).

GenBank Accessions – LSU: MT370427; SSU: MT370371

Notes – *Keissleriella italica* is typical of *Keissleriella* with its ostiolar neck, and fusiform, septate ascospores (Munk 1953, Tanaka et al. 2015). *Keissleriella italica* clustered sister to *K. dactylidicola* Mapook, Camporesi & K.D. Hyde and *K. phragmiticola* Wanas., E.B.G. Jones & K.D. Hyde with relatively poor bootstrap support (Fig. 3). *Keissleriella italica* has smaller ascomata (120–240 × 110–120 µm vs 160–210 × 200–230 µm vs 400–500 × 400–450 µm), asci (50–70 × 12–18 µm vs 60–80 × 8–10 µm vs 120–160 × 16–20 µm) and ascospores (8–10 × 2–3 µm vs 15–19 × 4–5 µm vs 35–50 × 7–11 µm) than that of *K. dactylidicola* and *K. phragmiticola*, respectively (Ariyawansa et al. 2015a, Wanasinghe et al. 2018a). Further, *K. dactylidicola* has surrounded by a hyaline, gelatinous sheath sheath around the ascospores while *Keissleriella italica* lacks a sheath and their ascospore arrangement and the ascii are also different from each other. Base pair differences of the LSU region of *Keissleriella italica* to *K. dactylidicola* and *K. phragmiticola* are 0.99% (6 bp out of 602 bp without gaps) and 1.3% (8 bp out of 602 bp without gaps) respectively. Even though there is less support in our phylogenetic analyses, we rely mostly on its independent lineage, nucleotide and morphological differences to treat it as a new species.

Pseudomurilentithecium Mapook & K.D. Hyde

Pseudomurilentithecium was introduced by Hyde et al. (2020) based on the combined LSU and ITS phylogeny. The genus clusters within Lentitheciaceae (Fig. 3). *Pseudomurilentithecium* shows close phylogenetic affinities to *Poaceascorna* and *Setoseptoria* (Hyde et al. 2020). However, *Pseudomurilentithecium* can be distinguished from *Setoseptoria* in having brown, fusiform and
muriform ascospores whereas *Poaceascoma* has hyaline, filiform ascospores without vertical septa (Phookamsak et al. 2015). In this study, we introduce another species to the genus from *Clematis vitalba*.

Figure 3 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -12505.847030. The combined LSU, SSU and ITS sequence datasets comprised
69 strains with *Massarina cisti* (CBS 266.62) and *M. pandanicola* (MFLUCC 17-0596) as the outgroup taxa. The matrix had 542 distinct alignment patterns, with 25.87% of undetermined characters or gaps. Estimated base frequencies were as follows; $A = 0.244251$, $C = 0.220423$, $G = 0.272920$, $T = 0.262407$; substitution rates $AC = 1.276940$, $AG = 2.987661$, $AT = 1.881985$, $CG = 0.507025$, $CT = 6.404577$, $GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.534298$. Maximum likelihood bootstrap (ML, black) values equal to or greater than 65% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.95 PP are given above the nodes. The scale bar indicates 0.03 changes. The ex-type strains are in black bold and new isolates are in red bold.

Figure 3 – Continued.

B. pseudomurulentithecium clematidis Brahanage, Camporesi & K.D. Hyde, sp. nov.
Index Fungorum number: IF557595; Facesoffungi number: FOF 08007
Etymology – The species epithet refers to the host genus “Clematis”.
Holotype – MFLU 20-0386
Saprobic on dead aerial branches of *Clematis vitalba*. Sexual morph: *Ascomata* 650–1500 µm high × 600–900 µm diam., immersed, solitary, scattered, coriaceous, subglobose to globose, dark brown to black. *Ostioral* neck protruding. *Peridium* 12–18 µm wide, composed of two layers, outer layer comprises 2–3 layers, dark brown cells of *textura angularis* and inner layer comprises hyaline cells of *textura angularis*. *Hamathecium* comprising 1.2–2 µm wide, cylindrical, septate, branched pseudoparaphyses. *Asci* 80–120 × 8–15 µm ($\bar{x} = 102 \times 14$ µm, $n = 10$), bitunicate, 8-spored, cylindrical-clavate, straight or slightly curved, apically rounded, short pedicellate. *Ascospores* 25–35 × 10–15 µm ($\bar{x} = 28 \times 12$ µm, $n = 30$), overlapping, uni–bi-seriate, initially hyaline to pale yellow, 1-septate when immature, becoming golden-brown to brown at maturity, ellipsoid to broadly fusiform, muriform, 3–8-transversely septate, with 1–2 vertical septa, constricted at the central septum, upper half wider than the lower half, straight or curved, surrounded by hyaline, thick gelatinous sheath. Asexual morph: Undetermined.
Material examined – ITALY. Province of Forlì-Cesena [FC], Fiumicello-Premilcuore, dead branches of *Clematis vitalba* (Ranunculaceae), 5 December 2013, E. Camporesi, IT 1559 (MFLU 20-0386, holotype; JZBH3490002, isotype).
Figure 4 – Keissleriella italica (MFLU 20-0394, holotype). a Appearance of ascomata on host. b Close up of an ascoma. c Section through an ascoma. d Ostiolar region. e Peridium. f Pseudoparaphyses. g–j Asci. k, l Ascospores. Scale bars: c = 100 µm, g–j = 20 µm, d, e, f = 10 µm, k, l = 5 µm.
Figure 5 – Pseudomurilentitheciun clematidis (MFLU 20-0386, holotype). a Appearance of ascomata on host. b Close up of an ascoma. c Section through an ascoma. d Peridium. e Pseudoparaphyses. f–i Asci. j–m Ascospores n. Ascospore showing thick gelatinous sheath. Scale bars: c = 500 µm, f–j = 50 µm, e = 20 µm, d, k–n = 10 µm

Notes – Pseudomurilentitheciun clematidis shares similar features with P. camporesii in having ascomata with protruding ostiolar necks, cylindrical, septate, branched pseudoparaphyses,
cylindric-clavate asci and ascospores that are initially hyaline to pale yellow which becomes golden-brown to brown at maturity and with a hyaline gelatinous sheath (Hyde et al. 2020). *Pseudomurillentithecium clematidis* has curved ascospores with a wider upper half than the lower half, while *P. camporesii* has mostly slightly curved ascospores with equal upper and lower portions. Size of ascomata (650–1500 × 600–900 µm vs 130–145 × 140–160 µm) and asc (80–120 × 8–15 µm vs 90–115 × 16–22 µm) of *P. clematidis* and *P. camporesii* are also different. Based on a phylogenetic analysis of combined LSU and ITS sequence dataset, *P. clematidis* is related to *P. camporesii* (Fig. 3). However, base pair differences of the ITS region of *P. clematidis* and *P. camporesii* is 1.9% (11 bp out of 590 bp without gaps). Thus, *P. clematidis* is introduced as a novel species based on both morphology and DNA sequence data.

Leptosphaeriaceae M.E. Barr

Members of Leptosphaeriaceae are saprobes, hemibiotrophs or pathogens on stems and leaves of herbaceous or woody plants in terrestrial and aquatic habitats (Hyde et al. 2013, Ariyawansa et al. 2015, Jones et al. 2020, Liu et al. 2015, Wanasinghe et al. 2015b, Phookamsak et al. 2019, Hongsanan et al. 2020). The asexual isolates (Boerema & Kesteren 1964). We herein introduce two new host record of *Plenodomus biglobosus* (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley (MFLU 200393) or hyphomycetes (*Leptosphaeriaceae*). Species in *Leptosphaeriaceae* are characterized by immersed, erumpent or superficial, perithecial ascomata with single papillate ostioles, fissitunicate, cylindrical asci and hyaline to brown, transversely septate ascospores (Hyde et al. 2013, Ariyawansa et al. 2015b, Phookamsak et al. 2019, Hongsanan et al. 2020). The asexual morphs of taxa in *Leptosphaeriaceae* are coelomycetes (*Heterospora chenopodii* (Westend.) Gruyter) or hyphomycetes (De Gruyter et al. 2013, Hyde et al. 2013, Wanasinghe et al. 2016, Tennakoon et al. 2017). Twelve genera are accepted in *Leptosphaeriaceae* (Wijayawardene et al. 2020, Hongsanan et al. 2020).

Plenodomus Preuss

Plenodomus was introduced by Preuss (1851) with *P. rabenhorstii* Preuss as the type species. However, *P. rabenhorstii* was replaced by *P. lingam* (Tode) Höhn. (sexual morph: *Leptosphaeria maculans* Ces. & De Not.) by Boerema & Kesteren (1964) due to the type material of *P. rabenhorstii* being lost during the World War II (Torres et al. 2005, Ariyawansa et al. 2015b, Phookamsak et al. 2019). The connection between *L. maculans* (sexual morph) and *P. lingam* (asexual morph) has been confirmed by single spore isolation (Boerema & Kesteren 1964). We herein introduce two new host record of *Plenodomus* species in Italy.

Plenodomus biglobosus (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley

Notes – Our new isolate (MFLU 20-0393) comprises phialidic, hyaline, smooth, ampulliform conidiogenous cells and hyaline, aseptate, ellipsoid to subcylindrical conidia. Our new isolate forms a well-supported lineage (96% ML, 1.00 PP; Fig. 6) in a clade comprising *P. biglobosus* (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley, *P. pimpinellae* (Lowen & Sivan.) Gruyter, 2495

Figure 6 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -12505.847030. The combined LSU, SSU, ITS and TEF1 sequence dataset comprised 101 strains of *Leptosphaeriaceae* with *Phaeosphaeria oryzae* (CBS 110110), *Phaeosphaeriopsis glaucopunctata* (MFLUCC 13-0265) and *Paraphoma radicina* (CBS 111.79) as the outgroup taxa. Tree topology of the ML analysis was similar to the BI analysis. The matrix had
542 distinct alignment patterns, with 25.87% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.244251, C = 0.220423, G = 0.272920, T = 0.262407; substitution rates AC = 1.276940, AG = 2.987661, AT = 1.881985, CG = 0.507025, CT = 6.404577, GT = 1.000000; gamma distribution shape parameter α = 0.534298. Maximum likelihood bootstrap (ML, black) values equal to or greater than 65% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.95 PP are given above the nodes. The scale bar indicates 0.03 changes. The ex-type strains are in black bold and new isolates are in red bold.

New isolate (MFLU 20-0393) shows a closer phylogenetic and morphological affinity to *P. biglobosus* (CBS 120119), which has been described from cultivated *Brassica* species as the cause of upper stem lesions. There are no significant differences in the base pair differences of LSU (0.11%, 1/875) and ITS (0.60%, 3/506) loci of our new isolate (MFLU 20-0393) and *P. biglobosus* (CBS 120119). Therefore, we identified our isolate (MFLU 20-0393) as *P. biglobosus*. This is the first record of *P. biglobosus* from *Alliaria petiolata* (Brassicaceae) in Italy.
Figure 7 – *Plenodomus biglobosus* (MFLU 20-0393). a, b Conidiomata on host surface. c Vertical section through a conidioma. d Pycnidial wall. e, f Developing conidia. g, h Conidia. Scale bars: c = 100 μm, d = 20 μm, g, h = 10, e, f = 5 μm.

Plenodomus enteroleucus (Sacc.) Gruyter, Aveskamp & Verkley

Index Fungorum number: IF564753; Facesoffungi number: FoF08009

Fig. 8
Saprobic on Picris hieracioides. Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata 150–270 × 255–360 μm (x̅ = 200 × 280 μm, n = 5), pycnidial, solitary, scattered, erumpent, mostly subglobose, ostiolate. Ostiole slightly papillate with a narrow pore or opening via a rupture. Pycnidial wall 20–35 μm wide, composed of several layers with thick-walled, brown to lightly pigmented cells of textura angularis, surface heavily pigmented. Conidiogenous cells 1–2.5 μm long, holoblastic, phialidic, globose to oblong, individually hyaline and pale brown when in a mass, and formed from the inner layer of pycnidial wall. Conidia 5–8 × 1.5–2.8 μm (x̅ = 6.5 × 2 μm, n = 20), hyaline, aseptate, ellipsoidal to oblong, with guttules.

Material examined – ITALY, Province of Forlì-Cesena [FC], Saviana-Santa Sofia, on dead aerial stems of Picris hieracioides (Asteraceae), 8 November 2017, E. Camporesi, IT 3575a (MFLU 20-0389, JZBH3480001).

GenBank Accessions – LSU: MT370423, ITS: MT370399

Notes – Our new isolate (MFLU 20-0389) shows a closer phylogenetic affinity to P. enteroleucus (Fig. 6) and it morphologically resembles the holotype PAD, Gillet, 1878. However, MFLU 20-0389 has comparatively longer conidia (5–8 vs 3–4 μm) than the type. There are no base pair differences in the ITS region of MFLU 20-0389 and CBS 142.84 strains. Therefore, by considering both phylogenetic and morphological data, we confirmed our new strain as P. enteroleucus. This is the first record of P. enteroleucus from Picris hieracioides (Asteraceae) in Italy.

Subplenodomus Gruyter, Aveskamp & Verkley

De Gruyter et al. (2013) introduced Subplenodomus with S. violicola (P. Syd.) Gruyter, Aveskamp & Verkley, as the type species, to accommodate selected phoma-like species that belong to Leptosphaeriaceae. Based on morphological and multi-gene phylogenetic analyses, Subplenodomus was accepted as an asexual morph of Leptosphaeriaceae (De Gruyter et al. 2013, Hyde et al. 2013, Ariyawansa et al. 2015b). Subplenodomus is characterized by thick-walled, ostiolate pycnidia, consisting of pseudoparenchymatous or sometimes scleroplectenchymatous cell types, phialidic, ampulliform to doliform conidiogenous cells and hyaline, aseptate, and ellipsoid conidia (De Gruyter et al. 2013). Subplenodomus species formed two distant subclades in our phylogenetic analyses (Fig. 6). Subplenodomus sensu stricto comprises S. galicola, S. violicola and our new species, S. meldolae, while S. apicola (Kleb.) Gruyter, Aveskamp & Verkley, S. drobnjacensis (Bubák) Gruyter, Aveskamp & Verkley and S. valeriana (Henn.) Gruyter, Aveskamp & Verkley are grouped in Subplenodomus sensu lato. The genus comprises five species and here we introduce a new species from Italy.

Subplenodomus meldolanus Brahmanage & K.D. Hyde, sp. nov.

Index Fungorum number: IF557592; Facesoffungi number: FoF08010

Etymology – Epithet refers to the geographical region “Meldola” where the species was found.

Holotype – MFLU 20-0398

Saprobic on dead aerial stems of Medicago sp. (Fabaceae). Sexual morph: Ascomata 185–300 × 260–420 μm (x̅ = 240 × 350 μm, n = 5), immersed, slightly erumpent through the host tissues, globose to subglobose, dark brown, with a central ostiole. Peridium 12–18 μm wide, composed of 4–6 layers of brown to dark brown, thick-walled cells of textura angularis. Hamathecium composed on pseudoparaphyses, 0.8–1.5 μm diam., intermingled among asci, subcylindrical, smooth, hyphae-like. Asci 80–100 × 12–13 μm (x̅ = 92 × 12.6 μm, n = 20), 8-spored, bitunicate, cylindrical to subcylindrical, subsessile to short pedicellate, with an indistinct ocular chamber. Ascospores 20–35 × 5–10 μm (x̅ = 30 × 8 μm, n = 30), bi-seriate, partially overlapping, fusoid-ellipsoid, pale brown, finely roughened, 3-septate, slightly constricted at the septa, at times first cell above median septum becomes slightly swollen. Asexual morph: Undetermined.
Figure 8 – Plenodomus enteroleucus (MFLU 20-0389). a, b Conidiomata on host surface. c Vertical section through a conidioma. d Pycnidial wall. e Developing conidia. f Conidia. Scale bars: c = 50 μm, d = 20 μm, e, f = 5 μm.
Figure 9 – *Subplenodomus meldolanus* (MFLU 20-0398, holotype). a Appearance of ascomata on host. b Close up of ascomata. c Section through an ascoma. d Peridium. e Pseudoparaphyses. f–h Asci. i Ascospores. Scale bars: c = 100 µm, f–h = 50 µm, e = 20 µm, d, i = 10 µm.
Material examined – ITALY, Province of Forlì-Cesena [FC], near Meldola, on a dead aerial stem of *Medicago* sp. (Fabaceae), 18 December 2017, E. Camporesi, IT 3625 (MFLU 20-0398, holotype; JZBH3480003 isotype).

GenBank Accessions – LSU: MT370424; ITS: MT370400

Notes – Phylogenetically, *Subplenodomus meldolanus* is closely related to *S. galicola* Phukhams., Tibpromma, Camporesi & K.D. Hyde described from a dead stem of *Galium* sp. collected in Italy. *Subplenodomus galicola* has larger ascospores (30–40 × 6–9 µm) that are constricted only at the median septa and asci (66–120 × 12–17 µm) (Tibpromma et al. 2017). Base pair differences of the ITS region of *S. meldolanus* as compared to *S. galicola* and *S. violicola* are 3.4% (30 bp out of 555 bp, without gaps) and 8.9% (44 bp out of 490 bp, without gaps), respectively.

Lophiostomataceae Luerss.

Lophiostomataceae was erected by Saccardo (1883) with *Lophioستoma macrostomum* (Tode) Ces. & De Not. as the type species (Hashimoto et al. 2018) and is characterized by slit-like ostiolar openings on a laterally compressed papilla, mostly clavate asci and 1- to multi-septate and hyaline to dark brown ascospores with terminal appendages or mucilaginous sheaths (Hyde et al. 2013, Ariyawansa et al. 2015a, Liu et al. 2015, Thambugala et al. 2015, Hyde et al. 2017, Tibpromma et al. 2017). Members of some genera also have trabeculate pseudoparaphyses (Liew et al. 2000).

Pseudopaucispora A. Hashim., K. Hiray. & Kaz. Tanaka

Pseudopaucispora was introduced to accommodate *P. brunneospora* A. Hashim., K. Hiray. & Kaz. Tanaka, with pseudopycnidia and small, brown ascospores (Hashimoto et al. 2018). This genus is somewhat similar to *Paucispora* (Thambugala et al. 2015). *Pseudopaucispora* differs from *Paucispora* in having a single zone ascomatal peridium and an ascus with a short pedicel, whereas *Paucispora* has two zones in the peridium and an ascus with a relatively long pedicel (Thambugala et al. 2015, Hashimoto et al. 2018).

Pseudopaucispora hyalinospora Samarak. & K.D. Hyde, sp. nov.

Index Fungorum number: IF557374; Facesoffungi number: FoF08003

Etymology – Refers to its hyaline ascospores

Holotype – MFLU 18–0803

Saprobic on dead branches in terrestrial habitat. Sexual morph *Ascomata* 475–510 µm high, 350–400 µm diam. (x̅ = 490 × 375 µm, n = 5), scattered, immersed, dark brown to black, globose to subglobose, ostiolate. *Papilla* 310–350 µm length, erumpent through host surface, coriaceous to carbonaceous. *Ostiole* crest-like, central, periphysate, broadly papillate, with an irregular pore-like opening, plugged by hyaline, filamentous hyphae. *Peridium* 30–60 µm wide (x̅ = 39.5 µm, n = 20), single stratum, with 4–6 layers of dark brown to black cells of *textura prismaticata*, fusing and indistinguishable from the host tissues. *Hamathecium* comprising 1.3–2 µm wide (x̅ = 1.6 µm, n = 25), numerous, filamentous, septate, branched, trabeculate pseudoparaphyses, embedded in a
gelatinous matrix. **Asci** 100–130 × 13–18 μm (x̅ = 110 × 15.8 μm, n = 25), 8-spored, bitunicate, fissitunicate, cylindric-clavate, with a short pedicel, apically rounded, with an ocular chamber. **Ascospores** 33.5–38.5 × 7–8 μm (x̅ = 38 × 7.3 μm, n = 30), L/W 5.2, uni- to bi-seriate, hyaline, light brown when mature, fusiform, 3-septate including 2 eusepta, constricted at the median septum, guttulate, smooth-walled, with a distinct narrow sheath at the end, 6–9 μm long (x̅ = 7.8 μm, n = 15). Asexual morph Undetermined.

Figure 10 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of −12454.204760. The combined LSU, SSU and TEF1 sequence dataset
comprised 54 strains of *Lophiostomataceae* with *Anguistimassarina populi* (MFLUCC 13-0034) as the outgroup taxon. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 709 distinct alignment patterns, with 9.91% of undetermined characters or gaps. Estimated base frequencies were as follows; $A = 0.246305$, $C = 0.242924$, $G = 0.273454$, $T = 0.237317$; substitution rates $AC = 1.155343$, $AG = 3.247931$, $AT = 1.046007$, $CG = 1.482199$, $CT = 9.600596$, $GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.652364$. Maximum likelihood bootstrap (ML, black) values equal to or greater than 50% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.90 PP are given above the nodes. The scale bar indicates 0.02 changes. The ex-type strains are in bold and new isolate is in red bold.

Figure 11 – *Pseudopaucispora hyalinospora* (MFLU 18–0803, holotype). a–c Ascomata on the substrate. d Section of the peridium. e–g Cross sections of ascomata. h Pseudoparaphyses. i–l Asci (l in congo red). m–q Ascospores (p in congo red, q in Indian ink). r Germinating ascospore. s Upper view of the colony. t Reverse view of the colony. Scale bars: a–c = 500 μm, e–g = 200 μm, d, i–l = 50 μm, m–r = 20 μm, h = 10 μm.
Culture characteristics – Ascospores becoming light brown and germinating on PDA within 18 h and producing germ tubes from the ends. Colonies on PDA reaching 16 mm diam. after 4 weeks at 25°C, circular, filiform margin, effuse to raised, surface grey, reverse yellowish brown, dense, with greyish green edge.

Material examined – THAILAND, Chiang Rai Province, Mueang District, on dead branch, 28 July 2017, M.C. Samarakoon, SAMC026 (MFLU 18–0803, holotype; HKAS 102296 isotype), ex-type living culture, MFLUCC 18–0360.

GenBank Accessions – LSU: MT435501, SSU: MT435504, TEF1: MT729647

Notes – Pseudopaucispora hyalinospora (MFLU 18–0803) possesses scattered, immersed ascomata with an elongated and laterally compressed ostiole, a single-layered peridium composed of rectangular, brown cells, cylindrical to clavate asci and fusiform, 1-septate, smooth-walled ascospores with a narrow bipolar sheath at the end. Pseudopaucispora hyalinospora differs from P. brunneospora in having larger ascomata (475–510 μm high, 350–400 μm diam. vs 210–300 μm high, 215–355 μm diam.), a thicker peridium (30–58 vs 15–18 μm) and larger asci (110 × 15.8 vs 75.0 × 8.7 μm) and ascospores (38 × 7.3 vs 15.3 × 4.0; l/w 5.2 vs 3.8) (Hashimoto et al. 2018). Pseudopaucispora brunneospora is characterized by brown ascospores in contrast to the hyaline spores in P. hyalinospora (Hashimoto et al. 2018). Phylogenetic analysis of combined LSU, SSU and TEF1 sequence data revealed that P. hyalinospora strain MFLUCC 18–0360 clusters with P. brunneospora with high statistical support (91 % ML, 1.00 PP; Fig. 10). Hence, we introduce P. hyalinospora isolated from dead branches as a new species.

Massarinae Munk

Munk (1956) introduced Massarinae typified by Massarina Sacc. with M. eburnea (Tul. & C. Tul.) Sacc. as the type species. Byssothecium Fuckel, Helminthosporiella Hern.-Restr., Sarria & Crous, Helminthosporium Link, Massarina Sacc., Pseudodidymosphaeria Thambug. & K.D. Hyde, Pseudoplanchnonema Chethana & K.D. Hyde, Semifissispora H.J. Swart, Stagonospora (Sacc.) Sacc and Suttonomyces Wiayaw., Camporesi & K.D. Hyde are accepted in Massarinae (Wijayawardene et al. 2020). In this study, we introduce a new species of Stagonospora.

Stagonospora (Sacc.) Sacc.

Stagonospora is typified by S. paludosa (Sacc. & Speg.) Sacc., a species isolated from Carex pseudocyperus. Quaedvlieg et al. (2013) re-evaluated septoria-like genera and introduced Stagonospora sensu stricto in Massarinae due to pycnidial, immersed, globose, ostiolate conidiomata, conidiophores reduced to holoblastic conidiogenous cells with percurrent proliferations, and doliform, cylindrical to ellipsoid, hyaline, guttulate conidia. Tanaka et al. (2015) revised Massarinae and accepted 12 species in Stagonospora based on both morphology and phylogeny data.

Stagonospora poaceicola Tennakoon, Phookamsak R & K.D. Hyde, sp. nov. Fig. 13

Index Fungorum number: IF557371; Facesoffungi number: FoF07748;
Etymology – Name reflects the host family (Poaceae) of the new species.
Holotype – MFLU 17-0769
Saprobic on dead stems of grasses. Sexual morph: Ascomata 170–220 × 160–190 μm diam. (X = 197 × 177 μm, n = 8), solitary or aggregated, semi-immersed to erumpent, elongate, uniloculate, subglobose or obpyriform, coriaceous, black, ostiolate. Peridium 20–25 μm wide composed of 3–4 layers of thin-walled, lightly pigmented to dark brown, somewhat flattened cells of textura angularis. Hamathecium composed of dense, 1.8–2.5 μm wide, filamentous, distinctly septate, broad, cellular pseudoparaphyses, slightly constricted at the septum, anastomosing at the apex, embedded in a hyaline gelatinous matrix. Asci (65–)70–110(–115) × (12–)14–21(–23) μm (X = 89 × 17 μm, n = 35), 8-spored, bitunicate, fissitunicate, clavate, short pedicellate (7–17.5 μm long), apically rounded with a shallow ocular chamber. Ascospores 21–28(–30) × 4.5–6.5 μm (X = 24.4 × 5.5 μm, n = 35), overlapping, uniseriate to biseriate or triseriate, hyaline, narrowly fusiform.
2–3-septate, slightly constricted at the middle septum, straight to curved, with or without guttules, smooth-walled, without a sheath. Asexual morph: Undetermined.

Material examined – CHINA, Yunnan Province, Xishuangbanna, Nabanhe, on dead stems of grass sp. (Poaceae), 25 November 2015, D.S. Tennakoon, KIB 029 (MFLU 17-0769, holotype; KUN-HKAS 96342, isotype).

Figure 12 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -14639.631854. The combined LSU, SSU, ITS and TEF1 sequence dataset
comprised 50 strains with *Periconia digitata* (CBS 510.77) as the outgroup taxon. Tree topology of the ML analysis was similar to the BI. The matrix had 898 distinct alignment patterns, with 39.41% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.239744, C = 0.237635, G = 0.270639, T = 0.251148; substitution rates AC = 1.597454, AG = 2.732638, AT = 1.893531, CG = 1.067351, CT = 8.759818, GT = 1.000000; gamma distribution shape parameter α = 0.486600. Maximum likelihood bootstrap (ML, black) values equal to or greater than 60% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.90% are given above the nodes. The scale bar indicates 0.03 changes. The ex-type strains are in black bold and new isolates are in red bold.

Figure 13 – *Stagonospora poaceicola* (MFLU 17-0769, holotype). a Appearance of ascomata on host. b Close-up of ascomata. c Section of an ascoma. d Section of peridium. e Pseudoparaphyses. f–h Asci. i–n Ascospores. Scale bars: c = 50 µm, d = 10 µm, e–h = 20 µm, i–n = 5 µm.

Notes – *Stagonospora poaceicola* shares similar morphological characteristics to *S. perfecta* Quaedvl., Verkley & Crous and *S. pseudoperfecta* Kaz. Tanaka & K. Hiray. in having short pedicellate asci and hyaline, fusiform, straight to curved ascospores. However, *S. perfecta* and *S. pseudoperfecta* differs from *S. poaceicola* by having ascospores with clear sub-median septum surrounded by a mucilaginous sheath (Tanaka et al. 2015). Furthermore, *S. poaceicola* has semi-immersed to erumpent ascomata, whereas *S. perfecta* and *S. pseudoperfecta* have immersed
asco mata. According to the combined multi-gene phylogeny (LSU, SSU, ITS and TEF1), *S. poaceicola* grouped with other *Stagonospora* species and shows a closer affinity to *S. bicolor* (Fig. 12). However, *S. bicolor* (D. Hawksw., W.J. Kaiser & Ndimele) Kaz. Tanaka & K. Hiray. can be distinguished from *S. poaceicola* by having melanized ascospores. These ascospores appeared to be released in a hyaline or very pale brown stage with 1–3 septa, but later the upper central cell in the 3-septate spores slightly inflated and can become dark brown to almost black at maturity (Eriksson & Hawksworth 2003).

Figure 14 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -14639.631854. The combined LSU, SSU, ITS and TEF1 sequence dataset comprised 32 strains with *Montagnula opulenta* (CBS 168.34) as the outgroup taxon. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 898 distinct alignment patterns, with 39.41 % of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.250353, C = 0.237635, G = 0.270639, T = 0.251148; substitution rates AC =
Morosphaeriaceae Suetrong et al.

Helicascus Kohlm.

Helicascus was established by Kohlmeyer (1969) and is typified by H. kanaloanus Kohlm. (Kohlmeyer 1969). This genus includes 11 species (Wijayawardene et al. 2017, 2018, Zeng et al. 2018). Helicascus is characterized by immersed ascostromata comprising several locules that share a common periphysate ostiole lying under a more or less conspicuous pseudostromatic tissue or solitary to clustered unilocular ascostromata, which may be immersed to almost superficial and septate ascospores with or without a mucilaginous sheath (Kohlmeyer 1969). Helicascus species have been reported from Australia, Brunei, Chile, China, Egypt, France, Philippines, South Africa, Thailand and the USA associated with freshwater habitats (Kohlmeyer 1969, Hyde 1991, Hyde et al. 1998, Cai et al. 2002, 2003, Zhang et al. 2013, 2014, Luo et al. 2016, Preedanon et al. 2017).

Index Fungorum number: IF552003; Facesoffungi number: FoF02019

Saprobic on dead wood, submerged in freshwater. Sexual morph: Ascomata 200–290 μm diam, 250–400 μm high (x̅ = 250 × 325 μm, n = 5), solitary, scattered, black, immersed, unilocular, globose to subglobose, ostiolate. Peridium 34–52 μm, subhyaline to dark brown, composed of several layers of pseudoparenchymatous cells, outer layer dark brown, with thick-walled cells, arranged in a textura angularis, inner layer hyaline with flattened, thin-walled cells. Hamathecium composed of 1.8–2.4 μm (x̅ = 2.1 μm, n = 20) wide, septate, hypha-like pseudoparaphyses, slightly constricted at the septa, embedded in a gelatinous matrix. Asci 78–110 × 13–20 μm (x̅ = 93.5 × 16.9 μm, n = 20), 8-spored, bitunicate, fissitunicate, clavate, apically rounded, dehiscent, endosporus narrow, coiled within ectoascus, ectoascus forming a long tail-like extension. Ascospores 19.5–32 × 5.5–8.7 μm (x̅ = 26.6 × 7.5 μm, n = 20), uni to bi-seriate and partially overlapping, ellipsoid-fusiform, verruculose, upper end narrowly rounded, lower end tapering, slightly curved in side view, with 2–4 large refractive guttules, 1-eseptate, septum submedian, hyaline when young, becoming brown when mature, thick-walled, verruculose, slightly constricted at the septum, surrounded by a 2.9–5.2 μm (x̅ = 4.1 μm, n = 10) wide sheath. Asexual morph: Undetermined.

Culture characteristics – Ascospores becoming blackish brown and germinating on PDA within 15 h. Colonies on PDA reaching 13–15 mm diam. after one week at 25°C, circular, undulate margin, smooth and effuse surface, yellowish white, reverse yellowish brown.

Material examined – CHINA, Guizhou Province, Guiyang City, Tongxin, Yan Lou, on dead wood submerged in an inland tank, 17 June 2018, M.C. Samarakoon, SAMC160 (MFLU 19–2103; HKAS 102391), living culture MFLUCC 20–0092.

GenBank Accessions – ITS: MT425059; LSU: MT435500, SSU: MT435503, TEF1: MT462701

Notes – Helicascus chiangraiensis was introduced by Luo et al. (2016) on decaying wood submerged in a pond from northern Thailand. The species is characterized by unilocular ascomata, coiling asci and verruculose ascospores with a mucilaginous sheath. The specimen in this study
(MFLU 19–2103) is similar to *H. chiangraiensis*. In addition, the molecular analysis showed that our strain clusters with *H. chiangraiensis* with high statistical support (99 % ML, 1.00 PP; Fig. 14). The base pairs comparisons of LSU and TEF1 sequences also show 100 % similarity among MFLU 15–0084 and MFLU 19–2103. Our isolate (MFLU 19–2103) is the first record of *H. chiangraiensis* from China.

![Image of helicascus chiangraiensis](image.png)

Figure 15 – *Helicascus chiangraiensis* (MFLU 19–2103). a–c Ascomata on the substrate. d Cross section of ascoma. e Section of the peridium. f Pseudoparaphyses. g–i Asci. j–o Ascospores (o in Indian ink). p Verruculose ascospores. Culture grow on PDA q. upper side, r. reverse side. Scale bars: a = 1 cm, b = 1000 μm, c = 500 μm, d = 100 μm, e, h, i = 20 μm, g, j–p = 10 μm, f = 5 μm.

Phaeosphaeriaceae M.E. Barr

Figure 16 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -25654.433343. The combined LSU, SSU and ITS sequence dataset comprised 117 strains of *Phaeosphaeriaceae* with *Staurosphaeria rhamnicola* (MFLUCC 17-0813) and (MFLUCC 17-0814) as the outgroup taxa. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 1059 distinct alignment patterns, with 29.42% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.244002, C = 0.232592, G = 0.265733, T = 0.257673; substitution rates AC = 1.239463, AG = 3.249856, AT = 2.647426, CG =
0.669460, CT = 7.008165, GT = 1.000000; gamma distribution shape parameter $\alpha = 0.610808$. Maximum likelihood bootstrap (ML, black) values equal to or greater than 65% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.95 PP are given above the nodes. The scale bar indicates 0.02 changes. The ex-type strains are in black bold and new isolates are in red bold.

Figure 16 – Continued.

Parastagonospora is characterized by immersed ascomata with slightly papillate ostioles, bitunicate, short pedicellate asci, fusoid, subhyaline to pale brown, septate ascospores and coelomycetous asexual morphs with hyaline, cylindrical, granular to multi-guttulate, transversely
euseptate conidia (Quaedvlieg et al. 2013, Li et al. 2015). Quaedvlieg et al. (2013) introduced this genus to accommodate several serious cereal-pathogens that were previously placed in either Septoria/Stagonospora or Leptosphaeria/Phaeosphaeria.

Parastagonospora dactylidicola Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557589; Facesoffungi number: FoF08011

Entomology: Epithet refers to the host genus *Dactylis* of the new species.

Holotype – MFLU 20-0387

Saprobic on dead aerial stems of *Dactylis glomerata*. Sexual morph: Undetermined. Asexual morph: Conidiomata 100–110 × 85–115 µm (μ̅ = 105 × 100 µm, n = 5), pycnidial, brown to black, erumpent or immersed to semi-immersed, globose to subglobose, ampulliform, or obpyriform, with central papillate ostiole. Pycnidial wall 35–10 µm wide, composed of outer layers of brown to dark brown cells and inner layers of hyaline cells of *textura angularis*. Conidiophores reduced to conidiogenous cells. Conidiogenous cells phialidic, hyaline, smooth- or telohyphalike, thin- or thick-walled, ellipsoid to oblong, or subcylindrical, multiguttulate, with obtuse or subobtuse apex, straight to gently curved, transversely 1-septate, sometimes constricted at the septa. Material examined – ITALY, Province of Forlì-Cesena [FC], San Lorenzo in Noceto, on dead aerial stems of *Dactylis glomerata* (Poaceae), 6 April 2015, E. Camporesi, IT 2433 (MFLU 20-0387, holotype; JZBH3460001, isotype). GenBank Accessions – LSU: MT370430, ITS: MT370412

Notes – *Parastagonospora dactylidicola* is similar to stagonospora-like asexual morph. Phylogeny based on LSU and ITS sequence analyses shows that *P. dactylidicola* forms a separate lineage basal to a clade comprising *Parastagonospora campignensis*, *P. dactylidis*, *P. minima*, *P. poaceicola* (MFLUCC 15-0471) (Fig. 16). However, *P. dactylidicola* can be distinguished from *P. dactylidis* and *P. minima* based on conidial morphology. *Parastagonospora dactylidicola* has cylindrical to subcylindrical or fusiform conidia with narrow ends, while *P. dactylidis* has fusiform conidia with a slightly narrower base, and distinctly granular cytoplasm, whereas *P. minima* has subcylindrical conidia which are wider in the basal half, and narrow at the apex (Ghaderi & Razavi 2018). In addition, the conidia of *P. dactylidicola* are smaller (7.5–10 × 2.5–3.5 µm) than that of *P. dactylidis* and *P. minima*. However, *P. campignensis* is known only from its asexual morph. Base pair differences of ITS gene region of the novel species to *P. campignensis*, *P. dactylidis* and *P. minima* are 4.7% (24 bp out of 506 bp, without gaps), 4.5% (23 bp out of 505 bp, without gaps) and 4.4% (22 bp out of 492 bp, without gaps) respectively.

Ophiobolus Riess

Ophiobolus was established based on the type species *O. phiobolus disseminans* by Reiss (1854). Species in *Ophiobolus* are characterized by ascomata with a long cylindrical erumpent beak lined with hyaline periphyses, cylindrical to cylindric-clavate asci usually in linear fascicles, and tetraseriate, multiseptate, phragmosporous to scolecosporous, elliptical to fusiform ascospores, sometimes bearing globose appendages at each end, sometimes with band-like or cushion-shaped appendages near the first-formed septum (Shoemaker & Babcock 1989, Phookamsak et al. 2014, 2017). Phookamsak et al. (2017) reported a polyphyletic nature of Ophiobolus-like fungi in Phaeosphaeriaceae. The type, *Ophiobolus disseminans*, showed close phylogenetic affinities with species of *Entodesmium* and *Premilicurensis* species. Those species were synonymized under *Ophiobolus* (Phookamsak et al. 2017).
Figure 17 – Parastagonospora dactylicola (MFLU 20-0387, holotype). a, b Conidiomata on host surface. c Vertical section through a conidioma. d Pycnidal wall. e, f Developing conidia. g–j Conidia. Scale bars: c = 50 μm, d, e = 20 μm, f–j = 10 μm.
Ophiobolus lathyri Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557591; Facesoffungi number: FoF 08012

Etymology – Epithet refers to the host genus *Lathyrus* of the new species.

Holotype – MFLU 20-0395

*Saprobi*c on dead aerial stem of *Lathyrus* sp. Sexual morph: *Ascomata* 730–990 µm high, 430–560 µm diam. (\(\bar{x} = 465 \times 500 \mu m, n = 5\)), immersed to slightly erumpent, scattered beneath the host periderm or on decorticated wood, visible as small black dots on the host surface, ampulliform, solitary, ostiolate. *Ostiole* central, inconspicuous at the surface. *Peridium* 120–132 µm wide, comprising an inner layer of hyaline 2–3 elongated cell layers and an outer layer of 3–4 layers, of dark brown, thick-walled cells of *textura angularis*. *Hamathecium* comprising numerous, 2–3.5 µm wide, filamentous, unbranched, cellular, guttulate pseudoparaphyses. *Asci* 180–325 × 14–18 µm (\(\bar{x} = 260 \times 16.2 \mu m, n = 20\)), 8-spored, bitunicate, fissitunicate, cylindric-clavate, with a pedicel. *Ascospores* 150–175 × 4–6 µm (\(\bar{x} = 168 \times 5.2 \mu m, n = 30\)), overlapping triseriate, hyaline, usually 12-euseptate, not constricted at septa, rounded at the ends, guttulate, smooth-walled, lacking a mucilaginous sheath. Asexual morph: Undetermined.

Material examined – ITALY, Province of Ravenna [RA], Fognano di Brisighella, on a dead aerial stem of *Lathyrus* sp. (Fabaceae), 16 March 2018, E. Camporesi, IT 3782b (MFLU 20-0395, holotype).

GenBank Accessions – LSU: MT370429; SSU: MT370372, ITS: MT893362

Notes – The present molecular analyses indicate that the new strain MFLU 20-0395 clusters in *Ophiobolus* (Fig. 16) and we recognized it as a new species, *Ophiobolus lathyri*. *Ophiobolus lathyri* showed a close phylogenetic affinity to *O. italicus* (Fig. 18). *Ophiobolus lathyri* can be distinguished from *O. italicus* by the ascospore shape and septation. *Ophiobolus lathyri* has filiform, 12-euseptate ascospores, while *O. italicus* has fusiform, 4-septate ascospores (Tibpromma et al. 2017). *Ophiobolus lathyri* can be easily distinguished from *O. rudis* in having relatively longer ascospores (150–175 × 4–6 µm vs 110–120 × 3–4 µm) and 18–20 septate ascospores. Base pair differences of the LSU region of *O. lathyri* to *O. italicus* and *O. rudis* are 0.24% (2 bp out of 818 bp, without gaps) and 0.9% (7 bp out of 796 bp) respectively. ITS base pair differences of *O. lathyri* to *O. italicus* and *O. rudis* are 2.3% (12 bp out of 512 bp, without gaps) and 4.3% (22 bp out of 314 bp, without gaps) which are in recommended range to consider them as different species according to Jeewon & Hyde (2016).

Paraophiobolus Phookamsak, Wanas. & K.D. Hyde

Paraophiobolus was introduced by Phookamsak et al. (2017) to accommodate *P. arundinis* Phukhams., Phookamsak, Wanas., Camporesi & K.D. Hyde and *P. plantaginis* (Qing Tian, Camporesi & K.D. Hyde) Phookamsak Wanas. & K.D. Hyde. We follow the latest treatment and updated account of *Paraophiobolus* in Phookamsak et al. (2017). Here, a novel species *P. torilicola* is introduced based on both morphology and phylogeny data.

Paraophiobolus torilicola Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557590; Facesoffungi number: FoF 08013

Etymology – Epithet refers to the host genus *Torilis* of the new species.

Holotype – MFLU 20-0392

*Saprobi*c on dead aerial stems of *Torilis arvensis*. Sexual morph: *Ascomata* 180–310 × 150–200 µm (\(\bar{x} = 220 \times 180 \mu m, n = 5\)), immersed to slightly erumpent through epidermis of host, light brown at base, brown to dark brown towards the apex, scattered, solitary to gregarious, globose to subglobose, uniloculate, glabrous, ostiolar, papillate. *Papilla* 60–75 × 50–70 µm, mammmiform to oblong, with rounded to truncate apex, composed of several layers of dark brown to black cells, arranged in a *textura angularis* to *textura prismatica*, glabrous, ostiole central, without periphyses. *Peridium* 16–18 µm wide, thick-walled, outer layer composed of 5–7 layers of brown to dark brown, thick-walled cells, arranged in a *textura angularis*, inner layer composed of 3–4 layers of hyaline, thin-walled cells of *textura angularis*, thicker towards the apex. *Hamathecium* comprising
numerous, 1–2.5 µm wide, broad, branched, septate, cellular pseudoparaphyses, embedded in a gelatinous matrix. Asci 45–100 × 4.5–5 µm (x̅ = 65 × 4.8 µm, n = 40), 8-spored, bitunicate, cylindrical to cylindrical-clavate, with short furcate pedicel, apically rounded, ocular chamber clearly visible when immature. Ascospores 40–60 × 1–2 µm (x̅ = 78 × 3 µm, n = 30), fasciculate, scolecosporous, filiform, with rounded ends, tapered towards the lower cells, hyaline to pale yellowish when young, becoming yellowish green at maturity, slightly curved near the apex, with around 11–13 eu-septa, swollen near the base of the 4th cell, slightly constricted at the 4th septum, not constricted at the other septa, not separating into part spores, smooth-walled, with terminal appendages at the ends. Asexual morph: Undetermined.

Material examined – ITALY, Province of Forlì-Cesena [FC], Viotre – Civitella di Romagna, dead aerial stem of Torilis arvensis (Huds.) Link (Apiaceae), 22 January 2018, E. Camporesi, IT 3689 (MFLU 20-0392, holotype; JZBH3460002, isotype).

GenBank Accessions – LSU MT370428, ITS: MT370411

Notes – Multi-gene phylogenetic analyses of combined LSU, SSU and ITS sequence dataset indicate that Paraophiobolus torilicola groups with the members of Paraophiobolus with high statistical support (100% ML, 1.00 PP) (Fig. 16). Paraophiobolus torilicola is phylogenetically closely related to P. arundinis and P. plantaginis. However, P. arundinis is different from P. torilicola in having relatively larger ascospores (70–85 × 2.5–3 µm vs 40–60 × 1–2 µm). Paraophiobolus plantaginis is easily distinguished from P. torilicola by the number of ascospore septa (5–8 vs 11–13). A synopsis of the host and the morphological characteristics of Paraophiobolus species is given in Table 2. Base pair differences of the ITS region of P. torilicola with P. arundinis and P. plantaginis are 1.8% (16 bp out of 899 bp) and 1.7% (15 bp out of 899 bp), respectively.

Table 2 Synopsis of Paraophiobolus species discuss in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Hosts</th>
<th>Ascomata (µm)</th>
<th>Asci (µm)</th>
<th>Ascospores (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. arundinis</td>
<td>Arundo pliniana</td>
<td>170–410 × 110–400</td>
<td>75–110 × 7–12</td>
<td>70–85 × 2.5–3 µm</td>
</tr>
<tr>
<td>P. plantaginis</td>
<td>Plantago sp.</td>
<td>145–205 × 135–220</td>
<td>69–124 × 7.4–9.5</td>
<td>50–72 × 4–6 µm</td>
</tr>
<tr>
<td>P. torilicola</td>
<td>Torilis arvensis</td>
<td>100–110 × 102–106</td>
<td>45–100 × 4.5–5</td>
<td>40–60 × 1–2 µm</td>
</tr>
</tbody>
</table>

Pleosporaceae

Pleosporaceae was introduced by Nitschke (1869) based on the immersed ascomata and presence of pseudoparaphyses, which was assigned to Sphaeriales. Pleosporaceae species are pathogens or saprobes on wood and dead herbaceous stems or leaves (Sivanesan 1984). The asexual morphs of Pleosporaceae can be hyphomycetes (Hyde et al. 2013, Ariyawansa et al. 2015c). Pleosporaceae comprises 24 genera (Wijayawardene et al. 2020).

Alternaria Nees

Nees (1816) introduced Alternaria based on A. tenuis as the only species. Later the type specimen of Torula alternata Fr. 1832 was identified by Simmons as synonymous with Nees (1816) description of A. tenuis; therefore, he declared A. alternata as the type for the genus (Simmons 1967). Alternaria species can be saprobes or pathogens on vegetation and often found on soil, air, dust and water-damaged buildings (Ellis 1971, Ellis & Sinclair 1976, Runa et al. 2009, Woudenberg et al. 2013, Lawrence et al. 2016). Some species have been described from polypropylene, rubber, fluorine plastics and jet fuel (Sheridan & Soteros 1974, Lugauskas et al. 2003, Al Ghafri et al. 2019). However, the majority of species are pathogens, infecting number of host species, including major greenhouse and field crops such as carrot, cucurbits, date, palm, tomato, tobacco and wheat (Al-Nadabi et al. 2018, Jayawardena et al. 2019a). Other species of Alternaria have been reported as food spoilers and postharvest pathogens that contaminate cereals, fruit and nuts (Pitt & Hocking 1997, Andersen & Hollensted 2008, Lawrence et al. 2016, Al Ghafri 2019b).
et al. 2019).

Figure 18 – *Ophiobolus lathyri* (MFLU 20-0395, holotype). a Appearance of ascomata on host. b Close-up of ascomata. c Section of an ascoma. d Section of peridium. e Pseudoparaphyses. f–h Asci. i, j Ascospores. Scale bars: c = 500 µm, d = 100 µm, f–h = 200 µm, i–j = 100 µm.
Figure 19 – Paraophiobolus torilicola (MFLU 20-0392, holotype). a Appearance of ascomata on host. b Close-up of ascomata. c Section of an ascoma. d Section of peridium. e Pseudoparaphyses. f–j Asci. k, l Ascospores. Scale bars: c = 100 µm, e–j = 50 µm, d, k–l = 20 µm.
Alternaria rumicis Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557587; Facesoffungi number: FoF 08017

Etymology – Species epithet refers to the host genus *Rumex*, of the new species

Holotype – MFLU 20-0396

Saprobic on dead aerial stems. Sexual morph: **Ascomata** 180–250 × 220–260 µm (x̅ = 210 × 250 µm, n = 5), black, solitary to gregarious, semi-immersed to erumpent, base fused with host substrate, globose to subglobose, with broadly to narrowly, oblong and flattened papilla. **Papilla** smooth, ostiolar canal filled with hyaline cells. **Peridium** 30–42 µm wide, slightly thin, thick at the sides and thinner at the base, composed of heavily pigmented, thick-walled cells of **textura angularis**, coriaceous. **Hamathecium** of 1–2 µm wide, cellular, septate, broad, dense pseudoparaphyses. **Asci** 110–150 × 25–35 µm (x̅ = 140 × 30 µm, n = 20), 8-spored, bitunicate, cylindrical to clavate, with short pedicel and minute ocular chamber. **Ascospores** 25–38 × 14–16 µm (x̅ = 35 × 15 µm, n = 30), partially overlapping, uni- to bi-seriate, mostly ellipsoidal, muriform, 3–5 transverse septa with 1 longitudinal septum in the central segments, end cells without septa, brown or pale brown, with a thick sheath. Asexual morph: Undetermined.

Culture characteristics – **Conidia** germinating on PDA within 14 h and reaching 4 cm diam. in 15 days at 25°C. Colonies growing on PDA, hairy or cottony, white to grey, mycelium superficial, effuse, radially striate, white to grey.

Material examined – ITALY, Province of Forlì-Cesena [FC], Magliano-Forlì, dead aerial stems of *Sinapis alba* (Brassicaceae), 28 April 2018, E. Camporesi, IT 3866 (MFLU 20-0396, holotype; JZBH3180036, isotype), ex-type living culture, JZB3180036; **ibids.**, Collina-Forlì, dead aerial stem of *Dactylis glomerata* (Poaceae), 28 April 2018, E. Camporesi, IT 3683 (MFLU 20-0400; JZBH3180037); Santa Sofia, dead aerial stem of *Rumex* sp. (Polygonaceae), 8 March 2014, E. Camporesi, IT 1758 (MFLU 20-0401; JZBH3180038); Tontola di Predappio, dead aerial stem of *Scabiosa* sp. (Caprifoliaceae), 19 March 2018, E. Camporesi, IT 3803 (MFLU 20-0402; JZBH3180039); Ravenna, Fognano di Brisighella, dead aerial stem of *Lathyrus* sp. (Fabaceae), 16 March 2018, E. Camporesi, IT 3779 (MFLU 20-0403; JZBH3180040).

Notes – **Alternaria rumicis** is phylogenetically closely related to *A. ventricosa* R.G. Roberts in *Alternaria section infectoria* (96% ML, 1.00 PP; Fig. 20). *Alternaria ventricosa* is known only from the sexual morph (Roberts 2007). Base pair differences of *A. rumicis* and *A. ventricosa* for ITS and GAPDH regions are 0.6% (3 bp out of 531 bp) and 1.56% (8 bp out of 519 bp).

Comoclathris Clem.

Comoclathris typified by *Comoclathris lanata* Clem., is characterized by ascomata with circular lid-like openings and applanate, reddish-brown to dark reddish-brown, muriform ascospores (Zhang et al. 2012, Ariyawansa et al. 2014, 2015a). Based on phylogenetic analyses *Comoclathris* was accepted in Pleosporaceae (Ariyawansa et al. 2015a, b, Wijayawardene et al. 2017). There are 44 epithets listed in Index Fungorum (2020) under this genus and most of them lack DNA sequence data. In this study we updated the genus with three new species which were collected from Italy.

Comoclathris europaea Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557585, Facesoffungi number: FoF08014

Etymology – Species epithet refers to the host epithet “*Olea europaea*”.

Holotype: MFLU 20-0391

Saprobic on dead stems of dead land leaves of *Olea europaea*. Sexual morph: **Ascomata** 240–250 µm × 145–165 µm (x̅ = 245 × 150 µm, n = 5), solitary, scattered, semi-immersed to slightly erumpent, dark brown to black, globose to subglobose, without a distinct ostiole.

2519
Figure 20 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -18854.981529. The combined ITS and GAPDH sequence dataset comprised 50 strains of *Alternaria* with *Nimby scirpicola* (CBS 481.90) as the outgroup taxon. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 764 distinct alignment patterns, with 4.72% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.241585, C = 0.261062, G = 0.262479, T = 0.234874; substitution rates AC = 1.843223, AG = 4.648646, AT = 1.463605, CG = 0.917951, CT = 7.866437, GT = 1.000000; gamma distribution shape parameter α = 0.182190. Maximum likelihood bootstrap (ML, black) values equal to or greater than 65% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.95 PP are given above the nodes. The scale bar indicates 0.02 changes. The ex-type strains are in black bold and new isolates are in red bold.
Figure 21 – Alternaria rumicis (MFLU 20-0396, holotype). a, b Ascomata on host surface. c Vertical section through an ascoma. d Peridium. f-h Asci. i-k Ascospores. l Culture on PDA (upper view). Scale bars: c = 100 µm, e-i = 50 µm, d, j, k = 20 µm.
Figure 22 – Maximum likelihood analyses with 1000 bootstrap replicates yielded a best tree with the likelihood value of -10271.393559. The combined LSU, SSU, ITS and RPB2 sequence dataset comprised 25 strains with *Neocamarosporium chichastianum* (IBRC M 30126), *N. chenopodii* (CBS206.80) and *N. goegapense* (CPC 23676) as the outgroup taxa. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 393 distinct alignment patterns, with 26.53% of undetermined characters or gaps. Estimated base frequencies were as follows; A =
Peridium 10–30 μm wide, dark brown to lightly pigmented cells of textura angularis. Hamathecium composed of 1–1.5 μm diam., hyaline, septate, anastomosed pseudoparaphyses. Asci 60–70 × 15–18 μm (x = 65 × 16.5 μm, n = 10), 8-spored, bitunicate, fissitunicate, cylindro-clavate, pedicellate, apex rounded, with an indistinct ocular chamber. Ascospores 20–22 × 11–13 μm (x = 21 × 12.8 μm, n = 20), uni- to biseriate, partially overlapping, muriform, brown, transversely septate or muriform, with 7 transverse septa, one longitudinal septum at central segments, ellipsoidal to clavate, with acute end at the apex and rounded end at the base, upper half slightly wider and shorter than the lower half cell, constricted at the primary septum, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Material examined – ITALY, Province of Forlì-Cesena [FC], Meldola, on dead land leaves of Olea europaea (Olacaceae), 20 January 2018, E. Camporesi, IT 3684 (MFLU 20-0391, holotype; JZBH3450002, isotype).

GenBank Accessions – LSU: MT370421; SSU: MT370367; ITS: MT370396; RPB2: MT729650

Notes – Comoclathris europaeae is similar to C. flammulae and it shows close phylogenetic affinities to C. lonicerae (MFLU 20-0385), C. flammulae (MFLU 20-0397, MFLU 20-0399) and C. italica (MFLUCC 15-0073, MFLUCC 14-1062) with high statistical support (96% ML, 1.00 PP; Fig 22). Their base pair differences within the ITS regions are C. flammulae (9/562 (1.60%), no gaps), C. italica (5/480 (1.04%), no gaps) and C. lonicerae (5/500 (1.00%), no gaps). Base pair differences within the RPB2 region are (7/521 (1.34 %), no gaps), C. italica (25/847 (2.95 %) and C. lonicerae (17/869 (1.95%), no gaps. Furthermore, C. europaeae has smaller asci (60–70 × 15–18 μm) than those of C. lonicerae (180–192 × 60–74 μm). Comoclathris europaeae has smaller asci (60–70 × 15–18 μm) and ascospores (20–22 × 11–13 μm) than those of C. italica (asci: 100–120 × 30–35 μm and ascospores: 30–35 × 10–15 μm).

Comoclathris flammulae Brahmangane, Camporesi & K.D. Hyde, sp. nov. Fig. 24

Index Fungorum number: IF557584; Facesoffungi number: FoF 08015
Etymology – Species epithet refers to the host species epithet “flammula”
Holotype: MFLU 20-0397
Saprobic on dead aerial branches of Clematis flammula and Colutea arborescens. Sexual morph: Ascomata 105–130 μm × 80–90 μm (x = 120 × 86 μm, n = 5), solitary or aggregated, immersed, globose to subglobose, dark brown to black, without a distinct ostiole. Peridium 14–30 μm wide, comprising 2–4 layers of dark brown to brown, thick-walled cells of textura angularis. Hamathecium comprising numerous, 1–1.5 μm wide, septate, pseudoparaphyses. Asci 50–55 × 13–17 μm (x = 52 × 15 μm, n = 10), 8-spored, bitunicate, fissitunicate, cylindric-clavate, short pedicellate, rounded at the apex, with an indistinct ocular chamber. Ascospores 16–22 × 10–16 μm (x = 20 × 15 μm, n = 20), overlapping uni- to bi-seriate, yellowish brown when immature, becoming dark brown at maturity, clavate, with acute ends, muriform, with 6 transverse septa, 1–2 longitudinal septa, upper part is wider than the lower part, smooth, with a thick, hyaline, mucilaginous sheath. Asexual morph: Undetermined.

Material examined – ITALY, Province of Forlì-Cesena [FC], Bonalda-Civitella di Romagna, on dead aerial branches of Clematis flammula (Ranunculaceae), 1 June 2018, E. Camporesi, IT 3922 (MFLU 20-0397, holotype; JZBH3450003, isotype); ibid., San Martino-Predappio, dead aerial branch of Colutea arborescens (Fabaceae), 23 October 2015, E. Camporesi, 13 (MFLU 20-0399; JZBH3450004).

Figure 23 – Comocladris europaeae (MFLU 20-0391, holotype). a Appearance of ascomata on host. b Close up of an ascoma. c Section through an ascoma. d Peridium. e Pseudoparaphyses. f–i Asci. j, k Ascospores. Scale bars: c = 100 µm, f–i = 20 µm, d, e, j–k = 10 µm.
Figure 24 – *Comoclathris flammulae* (MFLU 20-0397, holotype). a Appearance of ascomata on host. b Close up of ascomata. c Section through an ascoma. d Peridium. e Pseudoparaphyses. f–j Asci k, l Ascospores. Scale bars: c = 100 µm, e–j = 20 µm, d, k, l = 10 µm.

Notes – Isolates of *Comoclathris flammulae* (MFLU 20-0397 and MFLU 20-0399) grouped with statistical support (94% ML, 1.00 PP; Fig. 22) and are closely related to *C. europaeae*, *C. italic* and *C. lonicerae*. *Comoclathris flammulae* differs from *C. europaeae* by having smaller...
ascomata (105–130 μm × 80–90 μm vs 240–250 μm × 145–165 μm) and smaller asci (48–55 × 13–17 μm vs 60–70 × 15–18 μm). *Comoclathris flammulae* has smaller asci (50–55 × 13–17 μm vs 100–120 × 30–35 μm) and shorter ascospores (16–22 vs 30–35 μm) than those of *C. italica*. *Comoclathris flammulae* can be distinguished from *C. lonicerae* mainly by their ascospore septation (6 transverse septa vs 3–5 transverse septa). Base pair differences of ITS region of *Comoclathris flammulae* to *C. italica* and *C. lonicerae* are (7/550 (1.3%), no gaps) and (13/564 (2.3%), no gaps) respectively while RPB2 base pair differences are (20/861 (2.3%), no gaps) and (12/861 (2.4%), no gaps). *Comoclathris compressa* (Harkn.) Shoemaker & C.E. Babc., *C. pentamera* (P. Karst.) S. Ahmad and *C. sedi* Wanas., Ariyaw., Camporesi & K.D. Hyde have previously been reported from *Clematis* species. This is the first report of *Comoclathris* species from *Colutea* species.

Comoclathris lonicerae Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557586; Facesoffungi number: FoF 08016

Etymology – Species epithet refers to the host genus *Lonicera*.

Holotype – MFLU 20-0385

Saprobic on dead stems of living branches of *Lonicera* sp., appearing as black spots on the host surface. Sexual morph: *Ascomata* 370–485 μm × 255–360 μm (x = 460 × 300 μm, n = 10), solitary or aggregated, scattered, semi-immersed to erumpent, globose to subglobose, dark brown to black, without a distinct ostiole. *Peridium* 12–27 μm wide, comprising 2–4 layers of brown to dark brown cells of *textura angularis*. *Hamathecium* comprising numerous, 1.4–2.4 μm wide, septate, pseudoparaphyses. *Asci* 180–192 × 60–74 μm (x = 185 × 68 μm, n = 20), 8-spored, bitunicate, fissitunicate, broadly cylindrical to cylindrical-clavate, short pedicellate, rounded at the apex, with an indistinct, shallow ocular chamber. *Ascospores* 55–70 × 20–30 μm (x = 65 × 28 μm, n = 30), overlapping uni- or bi-seriate, yellowish brown, transversely septate or muriform, with 3–5 transverse septa, 1–2 longitudinal septa, with rounded ends, constricted at the middle septum, smooth with a thick mucilaginous sheath. Asexual morph Undetermined.

Material examined – ITALY, Province of Arezzo (AR), Montalone-Bibbiena, on living branches of *Lonicera* sp. (Caprifoliaceae), 5 May 2013, E. Camporesi, IT 1248 (MFLU 20-0385, holotype; JZBH3450001, isotype).

GenBank Accessions – LSU: MT370419; SSU: MT370365; ITS: MT370394; RPB2: MT729649

Notes – *Comoclathris lonicerae* is phylogenetically closely related to *C. italica* (MFLUCC 15-0073, MFLUCC 14-1062), but forms a well-separated lineage (95% ML, 1.00 PP) in the present phylogenetic analyses (Fig. 22). *Comoclathris lonicerae* can easily be distinguished from *C. italica* by their larger asci (180–192 × 60–74 μm vs 100–120 × 30–35 μm) and larger ascospores (55–70 × 20–30 μm vs 30–35 × 10–15 μm) (Thambugala et al. 2017). The ITS and RPB2 base pair difference among these isolates are 0.58% (3 bp without gaps out of 521bp) and 1.4% (12 bp without gaps out of 856 bp), respectively. Based on phylogenetic and morphological differences, we introduced this taxon as a new *Comoclathris* species. *Comoclathris emodi* reported from *Lonicera* sp. in India differs from *C. lonicerae* by having 4 transverse septa (Shoemaker & Babcock 1992). However, there is no sequence data available to compare the phylogenetic relationship of our new species to *C. emodi*.

Stemphylium Wallr.

Stemphylium is a well-established genus typified with *S. botryosum* Wallr. (Woudenberg et al. 2017). It includes dematiaceous hyphomycetes and can be distinguished from other hyphomycetes in Pleosporaceae by having phaeodictyosporides produced by the percurrent proliferation in its conidiophores, and apically swollen conidiogenous cells (Köhl et al. 2009). *Stemphylium* species are mostly pathogens on a wide range of vegetable plants, including tomato, lettuce, beans, pea and fruits (Câmara et al. 2002, Woudenberg et al. 2017, Brahmanage et al. 2018, 2019).
Figure 25 – *Comoclathris lonicerae* (MFLU 20-0385, holotype). a Appearance of ascomata on host. b Close up of ascomata. c Section through an ascoma. d Peridium. e Pseudoparaphyses and asci. f, g Asci. h–k Ascospores. Scale bars: c = 100 µm, e–g = 50 µm, h–k = 20 µm.
Stemphylium artemisiae Brahmanage, Camporesi & K.D. Hyde, sp. nov.

Index Fungorum number: IF557588; Facesoffungi number: FoF08018

Etymology: Name referring to the host genus Artemisia of the new species

Holotype – MFLU 20-0404

Saprobic on dead aerial stems of Artemisia sp. Sexual morph: Ascomata 80–100 × 130–140 μm (x̅ = 90 × 138 μm, n = 5), black, solitary, immersed to erumpent, base not easy to remove from the substrate, subglobose to ampulliform, coriaceous, with flattened ostiolate. Ostiole minute papillate, smooth, ostiolar canal filled with hyaline cells. Peridium 10–30 μm wide, usually composed with two layers, thick at the sides and thinner at the base, outer layer of heavily pigmented thick, composed with two layers, thick at the sides and thinner at the base, outer layer of heavily pigmented thick-walled cells of textura angularis, inner layer composed of hyaline to pale brown, thin-walled cells of textura angularis. Hamathecium of 1–2 μm wide, cellular, septate, broad, dense pseudoparaphyses. Asci 40–60 × 12–16 μm (x̅ = 55 × 14 μm, n = 20), 8-spored, bitunicate, fissitunicate, broadly cylindrical to cylindric-clavate, with a short pedicel and a minute ocular chamber. Ascospores 16–20 × 10–12 μm (x̅ = 18 × 11.5 μm, n = 30), uni- to bi-seriate, partially overlapping, pale brown to brown, mostly ellipsoidal, muriform with 4–7 transverse septa and 1–3 longitudinal septa, sectored, with a sheath. Asexual morph: Undetermined.

Culture characteristics – Colonies on PDA reaching 8 cm diam. after 2 weeks at 24°C, later with dense mycelium, circular, smooth margin, yellowish grey, reverse brownish yellow.

Material examined – ITALY, Province of Forlì-Cesena [FC], Monte Poggio – Castrocaro Terme e Terra del Sole, on a dead aerial stem of Artemisia sp. (Asteraceae), 22 February 2018, E. Camporesi, IT 3742 (MFLU 20-0404, holotype; JZBH3240016, isotype), ex-type living culture ZJB3240016.

GenBank Accessions – ITS: MT370409; CAL: MT729657; GAPDH: MT729664

Notes – In our phylogenetic analysis based on combined ITS, CAL and GAPDH DNA sequences, Stemphylium artemisiae clustered with members of Stemphylium (Fig. 29). Stemphylium artemisiae shows close phylogenetic affinities with S. amaranthi, S. halophilum and S. lycii, but forms a distinct lineage with members of S. artemisiae and S. holophilum based on their ascospore measurements (16–20 × 10–12 μm vs 34–41 × 14–18 μm vs 35–38 × 13–15 μm), respectively (Woudenberg et al. 2017, Poursafar et al. 2018).

Table 3 Base pair differences of Stemphylium artemisiae to its related species

<table>
<thead>
<tr>
<th>Species</th>
<th>ITS</th>
<th>GAPDH</th>
<th>CAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. amaranthi</td>
<td>0.55% (3 bp out of 545 bp)</td>
<td>2.8% (20 bp out of 700 bp)</td>
<td>1.3% (7 bp out of 584 bp)</td>
</tr>
<tr>
<td>S. halophilum</td>
<td>1.5% (8 bp out of 545 bp)</td>
<td>2.8% (20 bp out of 700 bp)</td>
<td>5.1% (20 bp out of 584 bp)</td>
</tr>
<tr>
<td>S. lycii</td>
<td>1.1% (6 bp out of 545 bp)</td>
<td>2.6% (18 bp out of 700bp)</td>
<td>3.6% (21 bp out of 584 bp)</td>
</tr>
</tbody>
</table>

Index Fungorum number: IF339660; Facesoffungi number: FoF04472

Saprobic on Dianthus pseudarmeria. Sexual morph: Ascomata 120–250 × 260–460 μm (x̅ = 200 × 350 μm, n = 5), immersed to semi-immersed, globose to sub-globose, coriaceous, ostiolate. Ostiole papillate, ostiolar canal filled with hyaline cells. Peridium 35–55 μm, composed with two layers, thick at the sides and thinner at the base, outer layer of heavily pigmented thick-walled cells of textura angularis, inner layer composed of hyaline thin-walled cells of textura angularis. Hamathecium of 2–3 μm wide, cellular, septate, broad, dense pseudoparaphyses. Asci 120–215 × 30–40 μm (x̅ = 142 × 35 μm, n = 20), 8-spored, bitunicate, cylindrical to clavate, with a short pedicel and a minute ocular chamber. Ascospores 25–40 × 12–18 μm (x̅ = 36 × 14 μm, n = 30), uni- to bi-seriate or partially overlapping, mostly ellipsoidal, muriform, 6 transverse septa and 1–2 longitudinal septa, sectored, with a sheath. Asexual morph: Undetermined.
Figure 26 – Maximum likelihood analysis with 1000 bootstrap replicates yielded a best tree with the likelihood value of -7963.959646. The combined ITS, CAL and GAPDH sequence dataset comprised 40 strains of Stenphylium with Alternaria alternata (GV14634) as the outgroup taxon. Tree topology of the ML analysis was similar to the BI analysis. The matrix had 582 distinct alignment patterns, with 9.10% of undetermined characters or gaps. Estimated base frequencies were as follows; A = 0.238736, C = 0.297155, G = 0.232870, T = 0.231239; substitution rates AC = 1.732597, AG = 4.848787, AT = 1.118155, CG = 1.400193, CT = 6.620922, GT = 1.000000; gamma distribution shape parameter α = 0.162791. Maximum likelihood bootstrap (ML, black)
values equal to or greater than 65% and Bayesian posterior probabilities (PP, green) equal to or greater than 0.95 PP are given above the nodes. The scale bar indicates 0.04 changes. The ex-type strains are black bold and new isolates are in red bold.

Figure 27 – *Stemphylium artemisiae* (MFLU 20-0404, holotype). a, b Ascomata on host surface. c Vertical section through an ascoma. d Peridium. e–g Asci. h, i Ascospores. j Culture on PDA. Scale bars: a = 500 μm, h, i = 50 μm, g–i = 10 μm.
Figure 28 – *Stemphylium vesicarium* (MFLU 20-0405). a, b Ascomata on host surface. c Vertical section through an ascoma. d Peridium. e Pseudoparaphyses. f, g Asci. h, i Ascospores. j, k Culture on PDA (j upper, k lower). Scale bars: a = 500 μm, c-f = 50 μm, g-i = 20 μm.

Culture characteristics – Colonies on PDA reaching 6 cm diam. after 1 weeks at 24°C, later with dense mycelium, circular, smooth margin, grey from upper, reverse brownish yellow.
Material examined – ITALY, Province of Forlì-Cesena, Isola Santa Sofia, on a dead aerial stem of *Dianthus* sp. (Caryophyllaceae), 2 April 2018, E. Camporesi, IT 2461 (MFLU 20-0405; JZBH3240017), living culture JZB3240017; *ibid.*, Cusercoli-Civitella di Romagna, on dead aerial stem of *Tragopogon* sp. (Asteraceae), 14 April 2018, E. Camporesi, IT 3833 (MFLU 20-0406; JZBH3240018); Cusercoli-Civitella di Romagna, dead aerial stem of *Scrophularia canina* (Scrophulariaceae), 8 May 2018, E. Camporesi, IT 3972 (MFLU 20-0410; JZBH3240022); Ridracoli – Bagno di Romagna, on dead aerial stem of *Helleborus* sp. (Ranunculaceae), 5 April 2018, E. Camporesi, IT 3748 (MFLU 20-0409); Castiglione – Forlì, on dead aerial stem of *Onobrychis viciifolia* (Fabaceae), 21 April 2018, E. Camporesi, IT 3835 (MFLU 20-0408; JZBH3240020); Via Cerchia – Forlì, on dead aerial stem of *Torilis arvensis* (Apiaceae), 1 March 2018, E. Camporesi, 3748 (MFLU 20-0409); Castiglione-Forlì, on dead aerial stem of *Vincetoxicum hirundinaria* (Apocynaceae), 12 July 2018, E. Camporesi, IT 3819 (MFLU 20-0411); Castiglione – Forlì, on dead aerial stem of *Scabiosa* sp., *Scrophularia canina*, *Torilis arvensis*, *Tragopogon* sp. and *Vincetoxicum hirundinaria* from Italy. According to Farr & Rossman (2020), this species is associated with more than 20 plant species worldwide.

Acknowledgments

We would like to thank Thailand Research grants entitled Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (grant no: RDG6130001) and (grant no: TRG5880152). We are grateful to the Mushroom Research Foundation for supporting this research. D.N. Wanasinghe would like to thank the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants: 41761144055, 41771063 and Y4ZK111B01. We also acknowledge the Mushroom Research Foundation for partially supporting this research. Rashika Brahmanage offers his deepest gratitude to Dr. Ruwishika Jayawardena, L. Mei and Zhang Wei for their helpful comments and advices.

References

Arx JA von, Müller E. 1975 – A re-evaluation of the bitunicate ascomycetes with keys to families and genera. Studies in Mycology 9, 1–159.

Barr ME. 1987b – *Prodromus* to class Loculoascomycetes. Newell, Amherst

Boerema GH. 2004 – *Phoma* identification manual: differentiation of specific and infra-specific taxa in culture. CABI

Brahmanage RS, Lu YZ, Bhat DJ, Wanasinghe DN et al. 2017 – Phylogenetic investigations on freshwater fungi in Tubeufiaceae (Tubeufiales) reveals the new genus * Dictyospora* and new species *Chlamydotubefia aquatica* and *Helicosporium flavum* Mycosphere 8, 917–933.

Brahmanage RS, Wanasinghe DN, Dayarathne MC, Jeewon R et al. 2019 – Morphology and phylogeny reveal *Stemphylium dianthi* sp. nov. and new host records for the sexual morphs of *S. beticola*, *S. gracilariae*, *S. simmonsii* and *S. vesicarium* from Italy and Russia. Phytotaxa 411, 243–263.

Cai L, Tsui CK, Zhang KQ, Hyde KD. 2002 – Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Diversity 9, 57–70.

Hawskworth DL. 2004 – Lichenoconium christiansenii sp. nov. from Nodobryoria abbreviata (Parmeliaceae) in the Pacific Northwest, with a key to the known lichenicolous species. The Lichenologist 36, 1–6.

Li WJ, Bhat DJ, Camporesi E, Tian Q et al. 2015a – New asexual morph taxa in Phaeosphaeriaceae. Mycosphere 6, 681–708.

Rambaut A. 2012 – Fig.Tree. Tree Fig. Drawing Tool, v. 1.4.0

Runa F, Park MS, Pryor BM. 2009 – Ulocladium systematics revisited: phylogeny and taxonomic status. Mycological progress 1, 8–35.
Thambugala KM, Hyde KD, Tanaka K, Tian Q et al. 2015 – Towards a natural classification and backbone tree for Lophiotomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74, 199–266.
Tibpromma S, Hyde KD, Tanaka K, Tian Q et al. 2015 – Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74, 199–266.

Yang Q, Chen WY, Jiang N, Tian CM. 2019 – Nectria-related fungi causing dieback and canker diseases in China with Neothyronectria citri sp. nov. described. MycoKeys 56, 49–66.